zoukankan      html  css  js  c++  java
  • HoG SVM 目标检测分析

    前一段时间开始了解HoG跟SVM行人识别,看了很多包括Dalal得前辈的文章及经验分享,对HoG理论有了些初步的认识。

    HoG 的全称是 Histogram of Oriented Gradient, 直译过来也就是梯度方向直方图。 就是计算各像素的梯度方向,统计成为直方图来作为特征表示目标。

    下面简述一下利用HoG + SVM 实现目标检测的简要步骤

    Step1:获取正样本集并用hog计算特征得到hog特征描述子。例如进行行人检测,可用IRINA等行人样本集,提取出行人的描述子。

    Step2:获取负样本集并用hog计算特征得到hog特征描述子。 负样本图像可用不含检测目标的图像随机剪裁得到。 通常负样本数量要远远大于正样本数目。

    Step3: 利用SVM训练正负正负样本,得到model。

    Step4:利用model进行负样本难例检测。对Training set 里的负样本进行多尺度检测,如果分类器误检出非目标则截取图像加入负样本中。(hard-negative mining)

    Step5:  结合难例重新训练model。

    Step6:应用最后的分类器model检测test set,对每幅图像的不同scale进行滑动扫描,提取descriptor并用分类器做分类。如果检测为目标则用bounding box 框出。图像扫描完成后应用 non-maximum suppression 来消除重叠多余的目标。

     

  • 相关阅读:
    二、一切都是对象
    一、对象导论
    CSS 属性大全
    CSS颜色代码大全
    CSS Position 定位属性
    CSS Box Model 盒子模型
    ThreadLocal
    Java 模拟死锁
    byte 最小值为啥是最小是 -128 ;int最小值为啥是 -2147483648
    cmd 查看端口号占用情况
  • 原文地址:https://www.cnblogs.com/klitech/p/5727880.html
Copyright © 2011-2022 走看看