zoukankan      html  css  js  c++  java
  • UVa 10305

    John has n tasks to do. Unfortunately, the tasks are not independent and the execution of one task is only possible if other tasks have already been executed.

    Input

    The input will consist of several instances of the problem. Each instance begins with a line containing two integers, 1 <= n <= 100 and mn is the number of tasks (numbered from 1 to n) and m is the number of direct precedence relations between tasks. After this, there will be m lines with two integers i and j, representing the fact that task i must be executed before task j. An instance with n = m = 0 will finish the input.

    Output

    For each instance, print a line with n integers representing the tasks in a possible order of execution.

    Sample Input

    	5 4
    	1 2
    	2 3
    	1 3
    	1 5
    	0 0

    Sample Output

    	1 4 2 5 3
    思路:
    拓扑排序裸题,用的是紫书上dfs的写法

    实现代码:
    #include<bits/stdc++.h>
    using namespace std;
    const int M = 200;
    int x,y,n,m,vis[M],topo[M],g[M][M],t;
    bool dfs(int u){
        vis[u] = -1;  //当前在判断的
        for(int i = 1;i <= n;i ++){
            if(g[u][i]){
            if(vis[i] < 0) return false;
            if(!vis[i]&&!dfs(i)) return false;
            }
        }
        vis[u] = 1; topo[t--] = u;
        return true;
    }
    
    bool toposort(){
        t=n;
        memset(vis,0,sizeof(vis));
        for(int i = 1;i <= n;i ++)
            if(!vis[i]&&!dfs(i)) return false;
        return true;
    }
    
    int main()
    {
        while(cin>>n>>m){
            if(n==0&&m==0) break;
            memset(g,0,sizeof(g));
            while(m--){
                cin>>x>>y;
                g[x][y] = 1;
            }
            if(toposort()){
                for(int i = 1;i <= n;i ++){
                    if(i==n) cout<<topo[i]<<endl;
                    else cout<<topo[i]<<" ";
                }
            }
        }
        return 0;
    }
  • 相关阅读:
    Java EE 和 Java Web
    09-盒模型
    08-层叠性权重相同处理
    07-css的继承性和层叠性
    06-伪元素选择器
    05-伪类选择器
    04-属性选择器
    03-高级选择器
    02-css的选择器
    01-css的引入方式
  • 原文地址:https://www.cnblogs.com/kls123/p/8525607.html
Copyright © 2011-2022 走看看