zoukankan      html  css  js  c++  java
  • poj 2299 Ultra-QuickSort(树状数组)

    Ultra-QuickSort
    Time Limit: 7000MS   Memory Limit: 65536K
    Total Submissions: 67681   Accepted: 25345

    Description

    In this problem, you have to analyze a particular sorting algorithm. The algorithm processes a sequence of n distinct integers by swapping two adjacent sequence elements until the sequence is sorted in ascending order. For the input sequence 
    9 1 0 5 4 ,

    Ultra-QuickSort produces the output 
    0 1 4 5 9 .

    Your task is to determine how many swap operations Ultra-QuickSort needs to perform in order to sort a given input sequence.

    Input

    The input contains several test cases. Every test case begins with a line that contains a single integer n < 500,000 -- the length of the input sequence. Each of the the following n lines contains a single integer 0 ≤ a[i] ≤ 999,999,999, the i-th input sequence element. Input is terminated by a sequence of length n = 0. This sequence must not be processed.

    Output

    For every input sequence, your program prints a single line containing an integer number op, the minimum number of swap operations necessary to sort the given input sequence.

    Sample Input

    5
    9
    1
    0
    5
    4
    3
    1
    2
    3
    0
    

    Sample Output

    6
    0

    思路;
    树状数组裸题,逆序对思想,离散化处理
    每插入一个点,查询下在这个点之前还有多少个点没被插入,这些点的数量就是逆序对的数量,也就是需要移动的步数
    当然也可以用线段树写,只不过要多敲点。。
    实现代码:
    #pragma comment(linker, "/STACK:1024000000,1024000000")
    #include<iostream>
    #include<cstring>
    #include<algorithm>
    #include<cstdio>
    using namespace std;
    #define ll long long
    #define lson l,m,rt<<1
    #define rson m+1,r,rt<<1|1
    #define mid int m = (l + r) >> 1
    const int M = 5e5 + 10;
    const double EPS = 1e-8;
    //inline int sgn(double x) return (x > EPS) - (x < -EPS); //浮点数比较常数优化写法
    int b[M],c[M],n;
    
    int lowbit(int x){
        return x&(-x);
    }
    
    int getsum(int x){
        int sum = 0;
        while(x>0){
            sum += c[x];
            x -= lowbit(x);
        }
        return sum;
    }
    
    void update(int x,int value){
        while(x<=n){
            c[x] += value;
            x += lowbit(x);
        }
    }
    
    struct node{
        int id,val;
    }a[M];
    
    bool cmp(node x,node y){
        return x.val < y.val;
    }
    
    int main()
    {
        while(scanf("%d",&n)&&n){
            memset(c,0,sizeof(c));
            for(int i = 1;i <= n;i ++){
                scanf("%d",&a[i].val);
                a[i].id = i;
            }
            sort(a+1,a+n+1,cmp);
            for(int i = 1;i <= n;i ++)
                b[a[i].id] = i;
            ll ans = 0;
            for(int i = 1;i <= n;i ++){
                update(b[i],1);
                ans += i-getsum(b[i]);
            }
            cout<<ans<<endl;
        }
        return 0;
    }


  • 相关阅读:
    列表和元组
    UVM宏
    UVM中重要函数
    组合模式(composite)
    装饰器模式(Decorator)
    适配器模式(Adapter)
    桥接模式
    原型模式(prototype)
    单例模式(singleton)
    UML类图
  • 原文地址:https://www.cnblogs.com/kls123/p/8977292.html
Copyright © 2011-2022 走看看