题目大意:
设(d(x))为(x)的约数个数,给定(n,m),求
[sumlimits_{i=1}^{n}sumlimits_{j=1}^{m}d(ij)
]
首先我们需要知道一个神仙定理:
[d(ij)=sumlimits_{x|i}sumlimits_{y|j}[gcd(x,y)==1]
]
证明:
假设(ij)中存在因子(p^k),且(i)中(p)的最高次因子为(p^{k_1}),且(j)中(p)的最高次因子为(p^{k_2}),那么:
当 (k<=k_1) 我们可以认为在(i)中选择了(k)个
当 (k>k_1) 我们可以认为在&i&总选择了(k_1)个,并且在(j)中选择了(k-k_1)个
这样就可以构成一个任意一个质因子的任意次幂的映射,这个映射成立的前提是([gcd(i,j)==1])
就这样证完啦_(:з」∠)_
所以根据神仙定理
[ret=sumlimits_{i=1}^{n}sumlimits_{j=1}^{m}sumlimits_{x|i}sumlimits_{y|j}[gcd(x,y)==1]
]
把枚举因子提前,枚举倍数
[ret=sumlimits_{x=1}^{n}sumlimits_{y=1}^{m}lfloorfrac{n}{x}
floor lfloorfrac{m}{y}
floor [gcd(x,y)==1]
]
(x,y)看着不顺眼,改成(i,j)吧(qwq)
[ret=sumlimits_{i=1}^{n}sumlimits_{j=1}^{m}lfloorfrac{n}{i}
floor lfloorfrac{m}{j}
floor [gcd(i,j)==1]
]
按照(YY)的(GCD)的套路,设
[f(x)=sumlimits_{i=1}^{n}sumlimits_{j=1}^{m}lfloorfrac{n}{i}
floor lfloorfrac{m}{j}
floor [gcd(i,j)==x]
]
[g(x)=sumlimits_{x|d}f(d)
]
则
[g(x)=sumlimits_{i=1}^{n}sumlimits_{j=1}^{m}lfloorfrac{n}{i}
floor lfloorfrac{m}{j}
floor [x|gcd(i,j)]
]
将(x)提出来,消除(gcd)的影响
[g(x)=sumlimits_{i=1}^{lfloorfrac{n}{x}
floor}sumlimits_{j=1}^{lfloorfrac{m}{x}
floor}lfloorfrac{n}{ix}
floor lfloorfrac{m}{jx}
floor
]
根据莫比乌斯反演第二形式,有
[f(n)=sumlimits_{n|d}mu(frac{d}{n})*g(d)
]
由题意得
[ret=f(1)=sumlimits_{1|d}mu(frac{d}{1})*g(d)=sumlimits_{d=1}^{min(n,m)}mu(d)g(d)
]
将(g(i))展开得到
[ret=sumlimits_{d=1}^{min(n,m)}mu(d)sumlimits_{i=1}^{lfloorfrac{n}{d}
floor}sumlimits_{j=1}^{lfloorfrac{m}{d}
floor}lfloorfrac{n}{di}
floorlfloorfrac{m}{dj}
floor
]
发现(lfloorfrac{n}{di} floor)和(j)没有关系,把它提前
[ret=sumlimits_{d=1}^{min(n,m)}mu(d)sumlimits_{i=1}^{lfloorfrac{n}{d}
floor}lfloorfrac{n}{di}
floorsumlimits_{j=1}^{lfloorfrac{m}{d}
floor}lfloorfrac{m}{dj}
floor
]
到此,我们可以设
[s(n)=sumlimits_{i=1}^{n}lfloorfrac{n}{i}
floor
]
这个(s)可以(O(nsqrt{n}))预处理
[ret=sumlimits_{d=1}^{min(n,m)}mu(d)s(lfloorfrac{n}{d}
floor)s(lfloorfrac{m}{d}
floor)
]
然后直接除法分块就好了,复杂度(O(nsqrt{n}+Tsqrt{n}))