已知函数(f(x)=alnx+frac{a-1}{x}-x),其中(a<2)
((1))讨论(f(x))的极值
((2))设(min Z),当(a=1)时,若关于(x)的不等式(f(x)<m-(x-2)e^x)在区间((0,1])上恒成立,求(m)的最小值
解:
((1))
[f'(x)=frac{a}{x}-frac{a-1}{x^2}-1=-frac{(x-1)[x-(a-1)]}{x^2}
]
当(a-1le 0)时,即(ale 1)时
(f(x))在(x=1)处取得极大值(f(1)=a-2),无极小值
当(0<a-1<1)时,即(1<a<2)时
(f(x))在(x=a-1)处取得极小值(f(a-1)=aln(a-1)-a+2),在(x=1)取取得极大值(f(1)=a-2)
((2))
当(a=1)时
[f(x)=lnx-x
]
[f'(x)=frac{1}{x}-1
]
[f(x)<m-(x-2)e^x
]
[m>lnx-x+(x-2)e^x
]
设(h(x)=lnx-x+(x-2)e^x,xin (0,1])
[h'(x)=(x-1)(e^x-frac{1}{x})
]
当(xin (0,1])
[(x-1)le 0
]
设(d(x)=e^x-frac{1}{x})
[d'(x)=e^x+frac{1}{x^2}>0
]
所以(d(x))在((0,1])上递增
[d(frac{1}{2})=sqrt{e}-2<0,d(1)=e-1>0
]
所以存在(x_0in (frac{1}{2},1))使得(d(x_0)=0)
[d(x_0)=0
]
[e^{x_0}=frac{1}{x_0}
]
[lnx_0=-x_0
]
[h(x)_{max}=h(x_0)=(x_0-2)e^{x_0}+lnx_0-x_0
]
[=(x_0-2)*frac{1}{x_0}-2x_0
]
[=1-(frac{2}{x_0}+2x_0)
]
函数(u(x)=1-(frac{2}{x}+2x))在((frac{1}{2},1))单调增
所以(h(x_0)in (-4,-3))
所以(m)最小值是(-3)