zoukankan      html  css  js  c++  java
  • 从 JDK 源码角度看 Object

    Java的Object是所有其他类的父类,从继承的层次来看它就是最顶层根,所以它也是唯一一个没有父类的类。它包含了对象常用的一些方法,比如getClasshashCodeequalsclonetoStringnotifywait等常用方法。所以其他类继承了Object后就可以不用重复实现这些方法。这些方法大多数是native方法,下面具体分析。

    主要的代码如下:

    public class Object {
    
      private static native void registerNatives();
    
      static {
        registerNatives();
      }
    
      public final native Class<?> getClass();
    
      public native int hashCode();
    
      public boolean equals(Object obj) {
        return (this == obj);
      }
    
      protected native Object clone() throws CloneNotSupportedException;
    
      public String toString() {
        return getClass().getName() + "@" + Integer.toHexString(hashCode());
      }
    
      public final native void notify();
    
      public final native void notifyAll();
    
      public final native void wait(long timeout) throws InterruptedException;
    
      public final void wait(long timeout, int nanos) throws InterruptedException {
        if (timeout < 0) {
          throw new IllegalArgumentException("timeout value is negative");
        }
    
        if (nanos < 0 || nanos > 999999) {
          throw new IllegalArgumentException("nanosecond timeout value out of range");
        }
    
        if (nanos > 0) {
          timeout++;
        }
    
        wait(timeout);
      }
    
      public final void wait() throws InterruptedException {
        wait(0);
      }
    
      protected void finalize() throws Throwable {}
    }

    registerNatives方法

    由于registerNatives方法被static块修饰,所以在加载Object类时就会执行该方法,对应的本地方法为Java_java_lang_Object_registerNatives,如下,

    JNIEXPORT void JNICALL
    Java_java_lang_Object_registerNatives(JNIEnv *env, jclass cls)
    {
        (*env)->RegisterNatives(env, cls,
                                methods, sizeof(methods)/sizeof(methods[0]));
    }

    可以看到它间接调用了JNINativeInterface_结构体的方法,简单可以看成是这样:它干的事大概就是将Java层的方法名和本地函数对应起来,方便执行引擎在执行字节码时根据这些对应关系表来调用C/C++函数,如下面,将这些方法进行注册,执行引擎执行到hashCode方法时就可以通过关系表来查找到JVM的JVM_IHashCode函数,其中()I还可以得知Java层上的类型应该转为int类型。这个映射其实就可以看成将字符串映射到函数指针。

    static JNINativeMethod methods[] = {
        {"hashCode",    "()I",                    (void *)&JVM_IHashCode},
        {"wait",        "(J)V",                   (void *)&JVM_MonitorWait},
        {"notify",      "()V",                    (void *)&JVM_MonitorNotify},
        {"notifyAll",   "()V",                    (void *)&JVM_MonitorNotifyAll},
        {"clone",       "()Ljava/lang/Object;",   (void *)&JVM_Clone},
    };

    getClass方法

    getClass方法也是个本地方法,对应的本地方法为Java_java_lang_Object_getClass,如下:

    JNIEXPORT jclass JNICALL
    Java_java_lang_Object_getClass(JNIEnv *env, jobject this)
    {
        if (this == NULL) {
            JNU_ThrowNullPointerException(env, NULL);
            return 0;
        } else {
            return (*env)->GetObjectClass(env, this);
        }
    }

    所以这里主要就是看GetObjectClass函数了,Java层的Class在C++层与之对应的则是klassOop,所以关于类的元数据和方法信息可以通过它获得。

    JNI_ENTRY(jclass, jni_GetObjectClass(JNIEnv *env, jobject obj))
      JNIWrapper("GetObjectClass");
      DTRACE_PROBE2(hotspot_jni, GetObjectClass__entry, env, obj);
      klassOop k = JNIHandles::resolve_non_null(obj)->klass();
      jclass ret =
        (jclass) JNIHandles::make_local(env, Klass::cast(k)->java_mirror());
      DTRACE_PROBE1(hotspot_jni, GetObjectClass__return, ret);
      return ret;
    JNI_END

    hashCode方法

    由前面registerNatives方法将几个本地方法注册可知,hashCode方法对应的函数为JVM_IHashCode,即

    JVM_ENTRY(jint, JVM_IHashCode(JNIEnv* env, jobject handle))
      JVMWrapper("JVM_IHashCode");
      // as implemented in the classic virtual machine; return 0 if object is NULL
      return handle == NULL ? 0 : ObjectSynchronizer::FastHashCode (THREAD, JNIHandles::resolve_non_null(handle)) ;
    JVM_END

    对于hashcode生成的逻辑由synchronizer.cppget_next_hash函数决定,实现比较复杂,根据hashcode的不同值有不同的生成策略,最后使用一个hash掩码处理。

    static inline intptr_t get_next_hash(Thread * Self, oop obj) {
      intptr_t value = 0 ;
      if (hashCode == 0) {
         value = os::random() ;
      } else
      if (hashCode == 1) {
         intptr_t addrBits = intptr_t(obj) >> 3 ;
         value = addrBits ^ (addrBits >> 5) ^ GVars.stwRandom ;
      } else
      if (hashCode == 2) {
         value = 1 ;            // for sensitivity testing
      } else
      if (hashCode == 3) {
         value = ++GVars.hcSequence ;
      } else
      if (hashCode == 4) {
         value = intptr_t(obj) ;
      } else {
         unsigned t = Self->_hashStateX ;
         t ^= (t << 11) ;
         Self->_hashStateX = Self->_hashStateY ;
         Self->_hashStateY = Self->_hashStateZ ;
         Self->_hashStateZ = Self->_hashStateW ;
         unsigned v = Self->_hashStateW ;
         v = (v ^ (v >> 19)) ^ (t ^ (t >> 8)) ;
         Self->_hashStateW = v ;
         value = v ;
      }
    
      value &= markOopDesc::hash_mask;
      if (value == 0) value = 0xBAD ;
      assert (value != markOopDesc::no_hash, "invariant") ;
      TEVENT (hashCode: GENERATE) ;
      return value;
    }

    equals方法

    这是一个非本地方法,判断逻辑也十分简单,直接==比较。

    clone方法

    由本地方法表知道clone方法对应的本地函数为JVM_Clone,clone方法主要实现对象的克隆功能,根据该对象生成一个相同的新对象(我们常见的类的对象的属性如果是原始类型则会克隆值,但如果是对象则会克隆对象的地址)。Java的类要实现克隆则需要实现Cloneable接口,if (!klass->is_cloneable())这里会校验是否有实现该接口。然后判断是否是数组分两种情况分配内存空间,新对象为new_obj,接着对new_obj进行copy及C++层数据结构的设置。最后再转成jobject类型方便转成Java层的Object类型。

    JVM_ENTRY(jobject, JVM_Clone(JNIEnv* env, jobject handle))
      JVMWrapper("JVM_Clone");
      Handle obj(THREAD, JNIHandles::resolve_non_null(handle));
      const KlassHandle klass (THREAD, obj->klass());
      JvmtiVMObjectAllocEventCollector oam;
    
      if (!klass->is_cloneable()) {
        ResourceMark rm(THREAD);
        THROW_MSG_0(vmSymbols::java_lang_CloneNotSupportedException(), klass->external_name());
      }
    
      const int size = obj->size();
      oop new_obj = NULL;
      if (obj->is_javaArray()) {
        const int length = ((arrayOop)obj())->length();
        new_obj = CollectedHeap::array_allocate(klass, size, length, CHECK_NULL);
      } else {
        new_obj = CollectedHeap::obj_allocate(klass, size, CHECK_NULL);
      }
      Copy::conjoint_jlongs_atomic((jlong*)obj(), (jlong*)new_obj,
                                   (size_t)align_object_size(size) / HeapWordsPerLong);
      new_obj->init_mark();
    
      BarrierSet* bs = Universe::heap()->barrier_set();
      assert(bs->has_write_region_opt(), "Barrier set does not have write_region");
      bs->write_region(MemRegion((HeapWord*)new_obj, size));
    
      if (klass->has_finalizer()) {
        assert(obj->is_instance(), "should be instanceOop");
        new_obj = instanceKlass::register_finalizer(instanceOop(new_obj), CHECK_NULL);
      }
    
      return JNIHandles::make_local(env, oop(new_obj));
    JVM_END

    toString方法

    逻辑是获取class名称加上@再加上十六进制的hashCode。

    notify方法

    此方法用来唤醒线程,final修饰说明不可重写。与之对应的本地方法为JVM_MonitorNotifyObjectSynchronizer::notify最终会调用ObjectMonitor::notify(TRAPS),这个过程是ObjectSynchronizer会尝试当前线程获取free ObjectMonitor对象,不成功则尝试从全局中获取。

    JVM_ENTRY(void, JVM_MonitorNotify(JNIEnv* env, jobject handle))
      JVMWrapper("JVM_MonitorNotify");
      Handle obj(THREAD, JNIHandles::resolve_non_null(handle));
      assert(obj->is_instance() || obj->is_array(), "JVM_MonitorNotify must apply to an object");
      ObjectSynchronizer::notify(obj, CHECK);
    JVM_END

    ObjectMonitor对象包含一个_WaitSet队列对象,此对象保存着所有处于wait状态的线程,用ObjectWaiter对象表示。notify要做的事是先获取_WaitSet队列锁,再取出_WaitSet队列中第一个ObjectWaiter对象,再根据不同策略处理该对象,比如把它加入到_EntryList队列中。然后再释放_WaitSet队列锁。它并没有释放synchronized对应的锁,所以锁只能等到synchronized同步块结束时才释放。

    void ObjectMonitor::notify(TRAPS) {
      CHECK_OWNER();
      if (_WaitSet == NULL) {
         TEVENT (Empty-Notify) ;
         return ;
      }
      DTRACE_MONITOR_PROBE(notify, this, object(), THREAD);
    
      int Policy = Knob_MoveNotifyee ;
    
      Thread::SpinAcquire (&_WaitSetLock, "WaitSet - notify") ;
      ObjectWaiter * iterator = DequeueWaiter() ;
      if (iterator != NULL) {
         TEVENT (Notify1 - Transfer) ;
         guarantee (iterator->TState == ObjectWaiter::TS_WAIT, "invariant") ;
         guarantee (iterator->_notified == 0, "invariant") ;
         if (Policy != 4) {
            iterator->TState = ObjectWaiter::TS_ENTER ;
         }
         iterator->_notified = 1 ;
    
         ObjectWaiter * List = _EntryList ;
         if (List != NULL) {
            assert (List->_prev == NULL, "invariant") ;
            assert (List->TState == ObjectWaiter::TS_ENTER, "invariant") ;
            assert (List != iterator, "invariant") ;
         }
    
         if (Policy == 0) {       // prepend to EntryList
             if (List == NULL) {
                 iterator->_next = iterator->_prev = NULL ;
                 _EntryList = iterator ;
             } else {
                 List->_prev = iterator ;
                 iterator->_next = List ;
                 iterator->_prev = NULL ;
                 _EntryList = iterator ;
            }
         } else
         if (Policy == 1) {      // append to EntryList
             if (List == NULL) {
                 iterator->_next = iterator->_prev = NULL ;
                 _EntryList = iterator ;
             } else {
                // CONSIDER:  finding the tail currently requires a linear-time walk of
                // the EntryList.  We can make tail access constant-time by converting to
                // a CDLL instead of using our current DLL.
                ObjectWaiter * Tail ;
                for (Tail = List ; Tail->_next != NULL ; Tail = Tail->_next) ;
                assert (Tail != NULL && Tail->_next == NULL, "invariant") ;
                Tail->_next = iterator ;
                iterator->_prev = Tail ;
                iterator->_next = NULL ;
            }
         } else
         if (Policy == 2) {      // prepend to cxq
             // prepend to cxq
             if (List == NULL) {
                 iterator->_next = iterator->_prev = NULL ;
                 _EntryList = iterator ;
             } else {
                iterator->TState = ObjectWaiter::TS_CXQ ;
                for (;;) {
                    ObjectWaiter * Front = _cxq ;
                    iterator->_next = Front ;
                    if (Atomic::cmpxchg_ptr (iterator, &_cxq, Front) == Front) {
                        break ;
                    }
                }
             }
         } else
         if (Policy == 3) {      // append to cxq
            iterator->TState = ObjectWaiter::TS_CXQ ;
            for (;;) {
                ObjectWaiter * Tail ;
                Tail = _cxq ;
                if (Tail == NULL) {
                    iterator->_next = NULL ;
                    if (Atomic::cmpxchg_ptr (iterator, &_cxq, NULL) == NULL) {
                       break ;
                    }
                } else {
                    while (Tail->_next != NULL) Tail = Tail->_next ;
                    Tail->_next = iterator ;
                    iterator->_prev = Tail ;
                    iterator->_next = NULL ;
                    break ;
                }
            }
         } else {
            ParkEvent * ev = iterator->_event ;
            iterator->TState = ObjectWaiter::TS_RUN ;
            OrderAccess::fence() ;
            ev->unpark() ;
         }
    
         if (Policy < 4) {
           iterator->wait_reenter_begin(this);
         }
    
         // _WaitSetLock protects the wait queue, not the EntryList.  We could
         // move the add-to-EntryList operation, above, outside the critical section
         // protected by _WaitSetLock.  In practice that's not useful.  With the
         // exception of  wait() timeouts and interrupts the monitor owner
         // is the only thread that grabs _WaitSetLock.  There's almost no contention
         // on _WaitSetLock so it's not profitable to reduce the length of the
         // critical section.
      }
    
      Thread::SpinRelease (&_WaitSetLock) ;
    
      if (iterator != NULL && ObjectMonitor::_sync_Notifications != NULL) {
         ObjectMonitor::_sync_Notifications->inc() ;
      }
    }

    notifyAll方法

    与notify方法类似,只是在取_WaitSet队列时不是取第一个而是取所有。

    wait方法

    wait方法是让线程等待,它对应的本地方法是JVM_MonitorWait,间接调用了ObjectSynchronizer::wait,与notify对应,它也是对应调用ObjectMonitor对象的wait方法。该方法较长,这里不贴出来了,大概就是创建一个ObjectWaiter对象,接着获取_WaitSet队列锁将ObjectWaiter对象添加到该队列中,再释放队列锁。另外,它还会释放synchronized对应的锁,所以锁没有等到synchronized同步块结束时才释放。

    JVM_ENTRY(void, JVM_MonitorWait(JNIEnv* env, jobject handle, jlong ms))
      JVMWrapper("JVM_MonitorWait");
      Handle obj(THREAD, JNIHandles::resolve_non_null(handle));
      assert(obj->is_instance() || obj->is_array(), "JVM_MonitorWait must apply to an object");
      JavaThreadInObjectWaitState jtiows(thread, ms != 0);
      if (JvmtiExport::should_post_monitor_wait()) {
        JvmtiExport::post_monitor_wait((JavaThread *)THREAD, (oop)obj(), ms);
      }
      ObjectSynchronizer::wait(obj, ms, CHECK);
    JVM_END

    finalize方法

    这个方法用于当对象被回收时调用,这个由JVM支持,Object的finalize方法默认是什么都没有做,如果子类需要在对象被回收时执行一些逻辑处理,则可以重写finalize方法。

  • 相关阅读:
    SpringMvc 框架
    面试:你最大的长处和弱点分别是什么?这些长处和弱点对你在企业的业绩会有什么样的影响?
    线程、并发、并行、进程是什么,以及如何开启新的线程?
    面向对象三大特性
    一台客户端有三百个客户与三百个客户端有三百个客户对服务器施压,有什么区别?
    JavaScript 引擎
    Spring Data JPA简介 Spring Data JPA特点
    博主博客
    微信相关
    关于正则表达式
  • 原文地址:https://www.cnblogs.com/knightsu/p/Object.html
Copyright © 2011-2022 走看看