zoukankan      html  css  js  c++  java
  • 第十四节 验证码识别案列

    import tensorflow as tf
    
    FLAGS = tf.app.flags.FLAGS
    tf.app.flags.DEFINE_string("captcha_dir", "./tfrecords", "验证码数据路径")
    tf.app.flags.DEFINE_integer("batch_size", 100, "每批次训练的样本数")
    tf.app.flags.DEFINE_integer("label_num", 4, "每个样本目标值数量")
    tf.app.flags.DEFINE_integer("letter_num", 26, "每个目标值取的字母的可能性个数")
    
    # 定义一个随机初始化权重函数
    def weight_variables(shape):
        w = tf.Variable(tf.random_normal(shape=shape, mean=0.0, stddev=1.0))
        return w
    
    # 定义一个随机初始化偏置函数
    def bias_variables(shape):
        b = tf.Variable(tf.constant(0.0, shape=shape))
        return b
    
    def read_and_decode():
        """读取验证码数据"""
        # 1.构建文件独立
        file_queue = tf.train.string_input_producer([FLAGS.captcha_dir])
    
        # 2.构建阅读器,读取文件内容,默认一个样本
        reader = tf.TFRecordReader()
        key, value = reader.read(file_queue)
    
        # tfrecords数据需要解析
        features = tf.parse_single_example(value, features={
            "image":tf.FixedLenFeature([], tf.string),
            "label":tf.FixedLenFeature([], tf.string),
        })
    
        # 解码内容,字符串内容
        # 1.解析图片特征值
        image = tf.decode_raw(features["image"], tf.uint8)
        # 2.解析目标值
        label = tf.decode_raw(features["label"], tf.uint8)
    
        # 改变形状
        image_reshape = tf.reshape(image, [20, 80, 3])
        label_reshape = tf.reshape(label, [4])
    
        # 进行批处理
        image_batch, label_batch = tf.train.batch([image_reshape, label_reshape], batch_size=FLAGS.batch_size, num_threads=2, capacity=10)
    
        return image_batch, label_batch
    
    def fc_model(image):
        """
        进行预测结果
        image [100, 20, 80, 3]
        """
        with tf.variable_scope("model"):
            # 1。随机初始化权重,偏置
            weights = weight_variables([20*80*3, 4*26])
            bias = bias_variables([4*26])
    
            # 将图片数据转换成二维
            image_reshape = tf.reshape(image, [-1, 20*80*3])
    
            # 进行全连接层矩阵运算
            y_predict = tf.matmul(tf.cast(image_reshape, tf.float32), weights) + bias
    
        return y_predict
    
    def captcharec():
        """验证码识别"""
        # 1.读取验证码数据
        image_batch, label_batch = read_and_decode()
    
        # 2.通过输入图片的特征数据,建立模型,得出预测结果
        # 一层,全连接层进行预测
        # matrix [100, 20*80*3]*[20*80*3, 4*26] + [104] = [100, 4*26]
        y_predict = fc_model(image_batch)
    
        # 目标值[100, 4]转换成one-hot编码==>[100, 4, 26]
        y_true = tf.one_hot(label_batch, depth=FLAGS.letter_num, on_value=1.0, axis=2)
    
        # softmax计算,交叉熵损失计算
        with tf.variable_scope("soft_cross"):
            # 求平均交叉熵损失
            loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=tf.reshape(y_true, [FLAGS.batch_size, FLAGS.label_num*FLAGS.letter_num]), logits=y_predict))
    
        # 梯度下降优化损失
        with tf.variable_scope("optimizer"):
            # 0.1是学习率,minimize表示求最小损失
            train_op = tf.train.GradientDescentOptimizer(0.0001).minimize(loss)
    
        # 计算准确率,三维比较 y_predict:[100, 4*26]==>[100, 4, 26]
        with tf.variable_scope("acc"):
            equal_list = tf.equal(tf.argmax(y_true, 2), tf.argmax(tf.reshape(y_predict, [FLAGS.batch_size, FLAGS.label_num, FLAGS.letter_num]), 1))
            # equal_list None个样本 [1, 0, 1, 1, 0, 0.....]
            accuracy = tf.reduce_mean(tf.cast(equal_list, tf.float32))
    
        # 定义初始化变量op
        init_op = tf.global_variables_initializer()
        # 开启会话
        with tf.Session() as sess:
            sess.run(init_op)
    
            # 定义线程协调器和开启线程
            coord = tf.train.Coordinator()
    
            # 开启线程读取文件
            threads = tf.train.start_queue_runners(sess, coord=coord)
    
            # 训练数据
            for i in range(5000):
                sess.run(train_op)
                print("第{}批次的准确率为:{}".format(i, accuracy.eval()))
    
            # 回收线程
            coord.request_stop()
            coord.join(threads)
        return None
    
    
    if __name__ == "__nain__":
        captcharec()
  • 相关阅读:
    24种设计模式之适配器模式
    内存分配与回收策略
    java 吞吐量
    JVM运行数据区
    垃圾收集算法学习
    对象的回收
    未来一段时间学习方向
    多线程并发容器
    python基础数据类型--list列表
    Sublime Text 快捷键
  • 原文地址:https://www.cnblogs.com/kogmaw/p/12602477.html
Copyright © 2011-2022 走看看