zoukankan      html  css  js  c++  java
  • 第六周学习报告

    本周划水水的一周,就写了一个实例,前面打基础的时候觉得不是很难,但真正上手的时候才知道灵活应用这些理论有多难,一百多行代码憋了好几天,还反复回去看QAQ

    import copy, numpy as np
    np.random.seed(0)
    
    def sigmoid(x):
        output = 1/(1+np.exp(-x))
        return output
    
    def sigmoid_output_to_derivative(output):
        return output*(1-output)
    
    
    int2binary = {}
    binary_dim = 8
    
    largest_number = pow(2,binary_dim)
    binary = np.unpackbits(
        np.array([range(largest_number)],dtype=np.uint8).T,axis=1)
    for i in range(largest_number):
        int2binary[i] = binary[i]
    
    
    alpha = 0.1
    input_dim = 2
    hidden_dim = 16
    output_dim = 1
    
    
    synapse_0 = 2*np.random.random((input_dim,hidden_dim)) - 1
    synapse_1 = 2*np.random.random((hidden_dim,output_dim)) - 1
    synapse_h = 2*np.random.random((hidden_dim,hidden_dim)) - 1
    
    synapse_0_update = np.zeros_like(synapse_0)
    synapse_1_update = np.zeros_like(synapse_1)
    synapse_h_update = np.zeros_like(synapse_h)
    
    for j in range(10000):
        
        a_int = np.random.randint(largest_number/2) # int version
        a = int2binary[a_int] # binary encoding
    
        b_int = np.random.randint(largest_number/2) # int version
        b = int2binary[b_int] # binary encoding
    
        c_int = a_int + b_int
        c = int2binary[c_int]
        
        d = np.zeros_like(c)
    
        overallError = 0
        
        layer_2_deltas = list()
        layer_1_values = list()
        layer_1_values.append(np.zeros(hidden_dim))
        
        for position in range(binary_dim):
            
            X = np.array([[a[binary_dim - position - 1],b[binary_dim - position - 1]]])
            y = np.array([[c[binary_dim - position - 1]]]).T
    
            layer_1 = sigmoid(np.dot(X,synapse_0) + np.dot(layer_1_values[-1],synapse_h))
    
            layer_2 = sigmoid(np.dot(layer_1,synapse_1))
    
            layer_2_error = y - layer_2
            layer_2_deltas.append((layer_2_error)*sigmoid_output_to_derivative(layer_2))
            overallError += np.abs(layer_2_error[0])
        
            d[binary_dim - position - 1] = np.round(layer_2[0][0])
            
            layer_1_values.append(copy.deepcopy(layer_1))
        
        future_layer_1_delta = np.zeros(hidden_dim)
        
        for position in range(binary_dim):
            
            X = np.array([[a[position],b[position]]])
            layer_1 = layer_1_values[-position-1]
            prev_layer_1 = layer_1_values[-position-2]
            
            layer_2_delta = layer_2_deltas[-position-1]
            layer_1_delta = (future_layer_1_delta.dot(synapse_h.T) + layer_2_delta.dot(synapse_1.T)) * sigmoid_output_to_derivative(layer_1)
    
            synapse_1_update += np.atleast_2d(layer_1).T.dot(layer_2_delta)
            synapse_h_update += np.atleast_2d(prev_layer_1).T.dot(layer_1_delta)
            synapse_0_update += X.T.dot(layer_1_delta)
            
            future_layer_1_delta = layer_1_delta
        
    
        synapse_0 += synapse_0_update * alpha
        synapse_1 += synapse_1_update * alpha
        synapse_h += synapse_h_update * alpha    
    
        synapse_0_update *= 0
        synapse_1_update *= 0
        synapse_h_update *= 0
        
        if(j % 1000 == 0):
            print "Error:" + str(overallError)
            print "Pred:" + str(d)
            print "True:" + str(c)
            out = 0
            for index,x in enumerate(reversed(d)):
                out += x*pow(2,index)
            print str(a_int) + " + " + str(b_int) + " = " + str(out)
            print "------------"
    
            
    
  • 相关阅读:
    awk应用
    字符串应用,expect预期交互,数组,正则表达式
    for,while循环,case分支,shell函数
    数值运算,if结构
    shell基础应用,变量的扩展应用
    rsync基本用法与配置,split分离解析
    PXE自动装机
    配置DNS服务器
    进程查看,终止
    应用技巧,vim用法,编译安装软件包
  • 原文地址:https://www.cnblogs.com/konelee/p/13549162.html
Copyright © 2011-2022 走看看