zoukankan      html  css  js  c++  java
  • POJ 3579 Median 二分加判断

    Median
    Time Limit: 1000MS   Memory Limit: 65536K
    Total Submissions: 12453   Accepted: 4357

    Description

    Given N numbers, X1X2, ... , XN, let us calculate the difference of every pair of numbers: ∣Xi - Xj∣ (1 ≤ i  j  N). We can get C(N,2) differences through this work, and now your task is to find the median of the differences as quickly as you can!

    Note in this problem, the median is defined as the (m/2)-th  smallest number if m,the amount of the differences, is even. For example, you have to find the third smallest one in the case of = 6.

    Input

    The input consists of several test cases.
    In each test case, N will be given in the first line. Then N numbers are given, representing X1X2, ... , XN, ( X≤ 1,000,000,000  3 ≤ N ≤ 1,00,000 )

    Output

    For each test case, output the median in a separate line.

    Sample Input

    4
    1 3 2 4
    3
    1 10 2
    

    Sample Output

    1
    8

    Source

     
    二分答案+O(nlogn)判断合法性
     
    O(n^2)是明显不行的。
    二分枚举中位数,在判断时候枚举每一个arr[i] 作为左端点,然后使用 upper_bound 求出第一个大于 arr[i]+mid 的元素的下标j。
    (j-1)-i 就是以arr[i]作为较小的数,可能的方案数。这样判断合法性的复杂度就是 O(nlogn)。
     
    btw,这里不光可以求出中位数,其实可以求出任意的第m个数。
     
    #include<cstdio>
    #include<algorithm>
    using namespace std;
    #define ll long long
    
    const int maxn = 1e5+5;
    int n;
    ll m;
    int arr[maxn];
    bool valid(int mid){
        int cnt = 0;
        for(int i=0;i<n;i++){
            cnt += (upper_bound(arr+i,arr+n,arr[i]+mid)-1-(arr+i));
        }
        return cnt >= m;
    }
    int main(){
        while(scanf("%d",&n)!=EOF){
            for(int i=0;i<n;i++)
                scanf("%d",&arr[i]);
            sort(arr,arr+n);
            m = 1ll*n*(n-1)/2;
            if(m%2==0){
                m = m/2;
            }else m = m/2+1;
            int l = -1, r = arr[n-1]-arr[0];
            while(l <= r){
                int mid = (l+r)/2;
                if(valid(mid))
                    r = mid-1;
                else
                    l = mid+1;
            }
            printf("%d
    ",l);
        }
        return 0;
    }
    View Code
  • 相关阅读:
    刚听完CSDN总裁蒋涛先生的学术报告
    WinForm下屏幕截图程序的实现
    .NET4.5 Async 与 Async Targeting Pack区别
    WP8中的Tiles
    WP8中调用APP的方式
    安装Win8后必做的优化
    如何将项目从WP7升级到WP8
    ActiveWriter集成到VS.NET的NHibernate(ActiveRecord)对象可视化设计工具
    概述CSLA.NET 3.6 (Overview of CSLA .NET 3.6 for Windows and Silverlight)
    SQL Server BI Step by Step 1 准备
  • 原文地址:https://www.cnblogs.com/kongbb/p/10795899.html
Copyright © 2011-2022 走看看