zoukankan      html  css  js  c++  java
  • SPOJ BANLUM 数位dp+三进制状态压缩

    Balanced numbers have been used by mathematicians for centuries. A positive integer is considered a balanced number if:

    1)      Every even digit appears an odd number of times in its decimal representation

    2)      Every odd digit appears an even number of times in its decimal representation

    For example, 77, 211, 6222 and 112334445555677 are balanced numbers while 351, 21, and 662 are not.

    Given an interval [A, B], your task is to find the amount of balanced numbers in [A, B] where both A and B are included.

    Input

    The first line contains an integer T representing the number of test cases.

    A test case consists of two numbers A and B separated by a single space representing the interval. You may assume that 1 <= A <= B <= 1019 

    Output

    For each test case, you need to write a number in a single line: the amount of balanced numbers in the corresponding interval

    Example

    Input:
    2
    1 1000
    1 9
    Output:
    147
    4


    题意:要判断一个数字中 0~9各个数出现的奇偶性,偶数(如 2)出现奇数次,奇数出现偶数次。如果某个偶数出现次数为0次也视作合法。
    求[l,r]区间中合法数字的数量。
    做了几道二进制状态压缩的题后就遇到了三进制压缩,emmmm。。。
    使用三进制来压缩,0表示没出现,1表示出现奇数次,2表示出现偶数次 状态转换为 0 -> 1 -> 2 -> 1 -> 2

    #include<cstdio>
    #include<cstring>
    #define ll long long
    
    int digit[20];
    ll dp[20][59100];
    
    int check(int s){
        int flag = 1;
        while(s){
            if((s%3)==0);
            else if((s%3)%2==flag);
            else return false;
            flag ^= 1;
            s /= 3;
        }
        return true;
    }
    int getnew(int s,int x){
        int t = 1;
        for(int i=0;i<x;i++)t*=3;
        switch((s/t)%3){
            case 0:
                s+=t;
                break;
            case 1:
                s+=t;
                break;
            case 2:
                s-=t;
                break;
        }
        return s;
    }
    ll dfs(int d,int s,int one,bool shangxian){
        if(d == 0)return check(s);
        if(!shangxian && dp[d][s]!=-1)
            return dp[d][s];
        int maxn = shangxian?digit[d]:9;
        ll cnt = 0;
        for(int i=0;i<=maxn;i++){
            cnt += dfs(d-1,(one||i)?(getnew(s,i)):0,one||i,shangxian&&i==maxn);
        }
        return shangxian?cnt:dp[d][s]=cnt;
    }
    ll solve(ll x){
        int k = 0;
        while(x){
            digit[++k] = x % 10;
            x /= 10;
        }
        return dfs(k,0,0,1);
    }
    int main(){
        int t;
        ll l, r;
        memset(dp,-1,sizeof(dp));
        scanf("%d",&t);
        while(t--){
            scanf("%lld%lld",&l,&r);
            printf("%lld
    ",solve(r)-solve(l-1));
        }
        return 0;
    }
    View Code



  • 相关阅读:
    jQuery源码——.html()方法原理解析
    【翻译】JavaScript内存泄露
    【翻译】ES6生成器简介
    浅谈事件冒泡
    Github page搭建博客使用自定义插件的方法
    【翻译】JavaScript中5个值得被广泛使用的数组方法
    【翻译】浏览器渲染Rendering那些事:repaint、reflow/relayout、restyle
    《JQuery技术内幕》读书笔记——自调用匿名函数剖析
    解决transition动画与display冲突的几种方法
    JavaScript递归中的作用域问题
  • 原文地址:https://www.cnblogs.com/kongbb/p/10878398.html
Copyright © 2011-2022 走看看