题意:
给你一个n*n的蛋糕,如果某个位置是'C'那就代表这是一个巧克力块,否则就不是。如果某两个巧克力块在同一行或同一列,那么这个家庭的幸福值就会加1,问你这个家庭的幸福值最大是多少
Input
3
.CC
C..
C.C
Output
4
Input
4
CC..
C..C
.CC.
.CC.
Output
9
If we number rows from top to bottom and columns from left to right, then, pieces that share the same row in the first sample are:
- (1, 2) and (1, 3)
- (3, 1) and (3, 3)
Pieces that share the same column are:
- (2, 1) and (3, 1)
- (1, 3) and (3, 3)
题解:
原本写的是先统计一下每一行每一列上巧克力块的个数,然后对于一行或一列用排列组合方式求出来有多少巧克力对,比如某行或某列有n块巧克力,那么巧克力对数就是C2n
但是这种方法要求阶乘,会爆掉long long
WA代码:
1 #include<stdio.h> 2 #include<string.h> 3 #include<iostream> 4 #include<algorithm> 5 #include<math.h> 6 #include<vector> 7 #include<queue> 8 #include<map> 9 using namespace std; 10 typedef long long ll; 11 const int maxn=110; 12 const int INF=0x3f3f3f3f; 13 char s[maxn][maxn]; 14 ll row[maxn],col[maxn],result[maxn]; 15 int main() 16 { 17 ll n; 18 scanf("%lld",&n); 19 result[1]=result[0]=1; 20 for(ll i=2;i<=n;++i) 21 { 22 result[i]=result[i-1]*i; 23 } 24 for(ll i=0;i<n;++i) 25 { 26 scanf("%s",s[i]); 27 } 28 for(ll i=0;i<n;++i) 29 { 30 for(ll j=0;j<n;++j) 31 { 32 if(s[i][j]=='C') 33 row[i]++,col[j]++; 34 } 35 } 36 ll sum=0; 37 for(ll i=0;i<n;++i) 38 { 39 //printf("%lld** ",result[row[i]]); 40 if(row[i]>=2) 41 sum=sum+result[row[i]]/(2*result[row[i]-2]); 42 } 43 for(ll i=0;i<n;++i) 44 { 45 //printf("%lld**** ",result[col[i]]); 46 if(col[i]>=2) 47 sum=sum+result[col[i]]/(2*result[col[i]-2]); 48 } 49 printf("%lld ",sum); 50 return 0; 51 }
我没有用快速乘和边乘边约分去优化,感觉用的话也可以过。。。但是还要打板子,,我换了一种方式
用时间换空间,暴力去找有多少对,,具体看代码
代码:
1 #include<stdio.h> 2 #include<string.h> 3 #include<iostream> 4 #include<algorithm> 5 #include<math.h> 6 #include<vector> 7 #include<queue> 8 #include<map> 9 using namespace std; 10 typedef long long ll; 11 const int maxn=110; 12 const int INF=0x3f3f3f3f; 13 ll n; 14 ll Map[maxn][maxn]; 15 char s[maxn][maxn]; 16 ll dfs(ll x, ll y) 17 { 18 ll xx = 0, yy = 0; 19 for (ll i = x + 1; i < n; i++) 20 { 21 if (Map[i][y]) 22 { 23 xx++; 24 } 25 } 26 for (ll i = y + 1; i < n; i++) 27 { 28 if (Map[x][i]) 29 { 30 yy++; 31 } 32 } 33 return xx + yy; 34 } 35 int main() 36 { 37 ll sum=0; 38 scanf("%lld",&n); 39 for(ll i=0;i<n;++i) 40 scanf("%s",s[i]); 41 for (ll i = 0; i < n; i++) 42 { 43 for (ll j = 0; j < n; j++) 44 { 45 if (s[i][j]=='C') 46 { 47 Map[i][j] = 1; 48 } 49 } 50 } 51 for (ll i = 0; i < n; i++) 52 { 53 for (ll j = 0; j < n; j++) 54 { 55 if (Map[i][j]) 56 { 57 sum += dfs(i, j); 58 } 59 } 60 } 61 printf("%lld ",sum); 62 return 0; 63 }