zoukankan      html  css  js  c++  java
  • 算法练习--LeetCode--29. Divide Two Integers

    1. Divide Two Integers

    Given two integers dividend and divisor, divide two integers without using multiplication, division and mod operator.
    Return the quotient after dividing dividend by divisor.
    The integer division should truncate toward zero.

    Example 1:

    Input: dividend = 10, divisor = 3
    Output: 3

    Example 2:

    Input: dividend = 7, divisor = -3
    Output: -2

    Note:

    • Both dividend and divisor will be 32-bit signed integers.
    • The divisor will never be 0.
    • Assume we are dealing with an environment which could only store integers within the 32-bit signed integer range: [−231, 231 − 1]. For the purpose of this problem, assume that your function returns 231 − 1 when the division result overflows.

    简单来说就是不用‘乘法’、‘除法’和‘取余’运算来求两个整数的商,注意结果要在 [−231, 231 − 1]

    Round One

    • 暴力减法(如下),我赌5毛,超时(Time Limit Exceeded)!
    // Swift Code
    class Solution {
        func divide(_ dividend: Int, _ divisor: Int) -> Int {
            let sign = (dividend >= 0) == (divisor > 0) ? 1 : -1
            var dividend = abs(dividend)
            let divisor = abs(divisor)
            var result = 0
            while dividend > divisor {
                dividend -= divisor
                result += 1
            }
            if dividend == divisor {
                result += 1
            }
            return sign < 0 ? -result : result
        }
    }
    

      

    Round Two

    一个一个减肯定是超时了,要是一批一批减呢?
    所以就需要先成倍放大被除数,不允许用‘乘法’、‘除法’和‘取余’ 还有 ‘<<’、‘>>’
    这个方法耗时少于超越了100%的其它Swift提交

    // Swift Code
    class Solution {
        func divide(_ dividend: Int, _ divisor: Int) -> Int {
            // 除数、被除数符号不一致时候商为负数
            let sign = (dividend >= 0) == (divisor > 0) ? 1 : -1
    
            // 扩大下数据类型,避免溢出
            var _dividend = Int64(abs(dividend))
            let _divisor = Int64(abs(divisor))
    
            var result = 0
            var temp = 1
            var _divisor_temp = _divisor
    
            // 放大被除数
            while _divisor_temp < _dividend {
                _divisor_temp = _divisor_temp << 1
                temp = temp << 1
            }
    
            // 在合理范围内缩小被放大的被除数
            while _divisor_temp > 0, _divisor_temp > _divisor {
                while _divisor_temp > _dividend {
                    _divisor_temp = _divisor_temp >> 1
                    temp = temp >> 1
                }
                _dividend -= _divisor_temp
                result += temp
            }
    
            // 竟然一样大,所以再来一次了
            if _dividend == _divisor {
                result += 1
            }
    
            // 结果是有范围限制的
            return sign < 0 ? max(-result, Int(Int32.min)) : min(result, Int(Int32.max))
        }
    }
    

      

    TestCase

    // Swift Code
    assert(Solution().divide(10, 3) == 3)
    assert(Solution().divide(3, 3) == 1)
    assert(Solution().divide(1, 1) == 1)
    assert(Solution().divide(2, 3) == 0)
    assert(Solution().divide(7, -3) == -2)
    assert(Solution().divide(-2147483648, -1) == 2147483647)
    assert(Solution().divide(0, 2147483648) == 0)
  • 相关阅读:
    String,StringBuffer,StringBuilder简单对比
    Java基本数据类型
    EasyMock框架的使用详解
    Python3.6在win7中无法正常运行的问题
    zabbix3.4源码安装步骤
    hadoop_2.6.5集群安装
    Cassandra2.2.10安装过程
    JDK1.8安装
    zookeeper3.4.6安装
    python3.6的安装及cx_oracle安装
  • 原文地址:https://www.cnblogs.com/kongkaikai/p/10223173.html
Copyright © 2011-2022 走看看