zoukankan      html  css  js  c++  java
  • Black Box《优先队列》

    Description

    Our Black Box represents a primitive database. It can save an integer array and has a special i variable. At the initial moment Black Box is empty and i equals 0. This Black Box processes a sequence of commands (transactions). There are two types of transactions:
    ADD (x): put element x into Black Box; GET: increase i by 1 and give an i-minimum out of all integers containing in the Black Box. Keep in mind that i-minimum is a number located at i-th place after Black Box elements sorting by non- descending.
    Let us examine a possible sequence of 11 transactions:
    Example 1
    N Transaction i Black Box contents after transaction Answer 
           (elements are arranged by non-descending)   
     1 ADD(3)      0 3   
     2 GET         1 3                                    3 
     3 ADD(1)      1 1, 3   
     4 GET         2 1, 3                                 3 
     5 ADD(-4)     2 -4, 1, 3   
     6 ADD(2)      2 -4, 1, 2, 3   
     7 ADD(8)      2 -4, 1, 2, 3, 8   
     8 ADD(-1000)  2 -1000, -4, 1, 2, 3, 8   
     9 GET         3 -1000, -4, 1, 2, 3, 8                1 
     10 GET        4 -1000, -4, 1, 2, 3, 8                2 
     11 ADD(2)     4 -1000, -4, 1, 2, 2, 3, 8   
    It is required to work out an efficient algorithm which treats a given sequence of transactions. The maximum number of ADD and GET transactions: 30000 of each type.
    Let us describe the sequence of transactions by two integer arrays:
    1. A(1), A(2), ..., A(M): a sequence of elements which are being included into Black Box. A values are integers not exceeding 2 000 000 000 by their absolute value, M <= 30000. For the Example we have A=(3, 1, -4, 2, 8, -1000, 2).
    2. u(1), u(2), ..., u(N): a sequence setting a number of elements which are being included into Black Box at the moment of first, second, ... and N-transaction GET. For the Example we have u=(1, 2, 6, 6).
    The Black Box algorithm supposes that natural number sequence u(1), u(2), ..., u(N) is sorted in non-descending order, N <= M and for each p (1 <= p <= N) an inequality p <= u(p) <= M is valid. It follows from the fact that for the p-element of our u sequence we perform a GET transaction giving p-minimum number from our A(1), A(2), ..., A(u(p)) sequence.

    Input

    Input contains (in given order): M, N, A(1), A(2), ..., A(M), u(1), u(2), ..., u(N). All numbers are divided by spaces and (or) carriage return characters.

    Output

    Write to the output Black Box answers sequence for a given sequence of transactions, one number each line.

    Sample Input

    7 4
    3 1 -4 2 8 -1000 2
    1 2 6 6

    Sample Output

    3
    3
    1
    2

    这题的题意:7 是7个数;4是指分4次输入
    ;第一次·输入1个,并取出第一小的,
    第二次输入2个(总共输入两个,要加上第一次输入的不分),取第二小的
    第三次输入6个 取第3小的&…………

    要是按照输入输出那样一点点的执行,会超时;
    用另个优先队列,一个小的在前,一个大的在前,下面我上代码,自己模拟一下看看;
     1 #include<iostream>
     2 #include<cstdio>
     3 #include<queue>
     4 using namespace std;
     5 int main()
     6 {
     7     priority_queue<int,vector<int>,greater<int> >qb;
     8     priority_queue<int,vector<int>,less<int> >qa;
     9     int m,n,a[30005],b,i,j;
    10     scanf("%d %d",&m,&n);
    11     for(i=0; i<m; i++)
    12         scanf("%d",&a[i]);
    13     j=0;
    14     for(i=0; i<n; i++)
    15     {
    16         scanf("%d",&b);
    17         while(j<b)
    18             qa.push(a[j++]);//压入大的在前的队列
    19         while(qa.size()>i)
    20         {
    21             qb.push(qa.top());
    22             qa.pop();
    23         }
    24         printf("%d
    ",qb.top());
    25         qa.push(qb.top());//经过下面两部操作,大的在前的队列中的数不会影响接下来的取值
    26         qb.pop();
    27     }
    28     return 0;
    29 }
    View Code




  • 相关阅读:
    置顶
    hbck2的一些用法
    常用的jvm一些监控命令
    HBCK2修复hbase2的常见场景
    HBase2版本的修复工具HBCK2
    使用python写入excel
    CentOS-Linux下面的xfs磁盘配额
    使用podman容器部署飞儿云框架
    在docker中安装宝塔
    在CentOS7中安装Docker并开一台CentOS8的容器
  • 原文地址:https://www.cnblogs.com/kongkaikai/p/3272856.html
Copyright © 2011-2022 走看看