Description
Our Black Box represents a primitive database. It can save an integer array and has a special i variable. At the initial moment Black Box is empty and i equals 0. This Black Box processes a sequence of commands (transactions). There are two types of transactions:
ADD (x): put element x into Black Box; GET: increase i by 1 and give an i-minimum out of all integers containing in the Black Box. Keep in mind that i-minimum is a number located at i-th place after Black Box elements sorting by non- descending.
Let us examine a possible sequence of 11 transactions:
Example 1
Let us describe the sequence of transactions by two integer arrays:
1. A(1), A(2), ..., A(M): a sequence of elements which are being included into Black Box. A values are integers not exceeding 2 000 000 000 by their absolute value, M <= 30000. For the Example we have A=(3, 1, -4, 2, 8, -1000, 2).
2. u(1), u(2), ..., u(N): a sequence setting a number of elements which are being included into Black Box at the moment of first, second, ... and N-transaction GET. For the Example we have u=(1, 2, 6, 6).
The Black Box algorithm supposes that natural number sequence u(1), u(2), ..., u(N) is sorted in non-descending order, N <= M and for each p (1 <= p <= N) an inequality p <= u(p) <= M is valid. It follows from the fact that for the p-element of our u sequence we perform a GET transaction giving p-minimum number from our A(1), A(2), ..., A(u(p)) sequence.
ADD (x): put element x into Black Box; GET: increase i by 1 and give an i-minimum out of all integers containing in the Black Box. Keep in mind that i-minimum is a number located at i-th place after Black Box elements sorting by non- descending.
Let us examine a possible sequence of 11 transactions:
Example 1
N Transaction i Black Box contents after transaction Answer (elements are arranged by non-descending) 1 ADD(3) 0 3 2 GET 1 3 3 3 ADD(1) 1 1, 3 4 GET 2 1, 3 3 5 ADD(-4) 2 -4, 1, 3 6 ADD(2) 2 -4, 1, 2, 3 7 ADD(8) 2 -4, 1, 2, 3, 8 8 ADD(-1000) 2 -1000, -4, 1, 2, 3, 8 9 GET 3 -1000, -4, 1, 2, 3, 8 1 10 GET 4 -1000, -4, 1, 2, 3, 8 2 11 ADD(2) 4 -1000, -4, 1, 2, 2, 3, 8It is required to work out an efficient algorithm which treats a given sequence of transactions. The maximum number of ADD and GET transactions: 30000 of each type.
Let us describe the sequence of transactions by two integer arrays:
1. A(1), A(2), ..., A(M): a sequence of elements which are being included into Black Box. A values are integers not exceeding 2 000 000 000 by their absolute value, M <= 30000. For the Example we have A=(3, 1, -4, 2, 8, -1000, 2).
2. u(1), u(2), ..., u(N): a sequence setting a number of elements which are being included into Black Box at the moment of first, second, ... and N-transaction GET. For the Example we have u=(1, 2, 6, 6).
The Black Box algorithm supposes that natural number sequence u(1), u(2), ..., u(N) is sorted in non-descending order, N <= M and for each p (1 <= p <= N) an inequality p <= u(p) <= M is valid. It follows from the fact that for the p-element of our u sequence we perform a GET transaction giving p-minimum number from our A(1), A(2), ..., A(u(p)) sequence.
Input
Input contains (in given order): M, N, A(1), A(2), ..., A(M), u(1), u(2), ..., u(N). All numbers are divided by spaces and (or) carriage return characters.
Output
Write to the output Black Box answers sequence for a given sequence of transactions, one number each line.
Sample Input
7 4 3 1 -4 2 8 -1000 2 1 2 6 6
Sample Output
3 3 1 2
这题的题意:7 是7个数;4是指分4次输入
;第一次·输入1个,并取出第一小的,
第二次输入2个(总共输入两个,要加上第一次输入的不分),取第二小的
第三次输入6个 取第3小的&…………
要是按照输入输出那样一点点的执行,会超时;
用另个优先队列,一个小的在前,一个大的在前,下面我上代码,自己模拟一下看看;
1 #include<iostream> 2 #include<cstdio> 3 #include<queue> 4 using namespace std; 5 int main() 6 { 7 priority_queue<int,vector<int>,greater<int> >qb; 8 priority_queue<int,vector<int>,less<int> >qa; 9 int m,n,a[30005],b,i,j; 10 scanf("%d %d",&m,&n); 11 for(i=0; i<m; i++) 12 scanf("%d",&a[i]); 13 j=0; 14 for(i=0; i<n; i++) 15 { 16 scanf("%d",&b); 17 while(j<b) 18 qa.push(a[j++]);//压入大的在前的队列 19 while(qa.size()>i) 20 { 21 qb.push(qa.top()); 22 qa.pop(); 23 } 24 printf("%d ",qb.top()); 25 qa.push(qb.top());//经过下面两部操作,大的在前的队列中的数不会影响接下来的取值 26 qb.pop(); 27 } 28 return 0; 29 }