zoukankan      html  css  js  c++  java
  • 02_opencv_python_图像处理进阶

    1  灰度图

    import cv2  # opencv读取的格式是BGR
    import numpy as np
    import matplotlib.pyplot as plt  # Matplotlib是RGB
    %matplotlib inline 
    
    img=cv2.imread('cat.jpg')
    img_gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
    img_gray.shape

      cv2.imshow("img_gray", img_gray)
      cv2.waitKey(0)
      cv2.destroyAllWindows()

    2  HSV

    • H - 色调(主波长)。
    • S - 饱和度(纯度/颜色的阴影)。
    • V值(强度)
    hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)
    
    cv2.imshow("hsv", hsv)
    cv2.waitKey(0)    
    cv2.destroyAllWindows()

    3  图像阈值 

    参考上篇博客中的 基于颜色提出目标

    # 1.将RGB转换成HSV色彩空间
    hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)
    
    # 2.定义数组,说明你要提取(过滤)的颜色目标
    # 三通道,所以是三个参数
    # 红色
    lower_hsv_r = np.array([156, 43, 46])
    upper_hsv_r = np.array([180, 255, 255]) 
        
    # 3.进行过滤,提取,得到二值图像
    mask_red = cv2.inRange(hsv, lower_hsv_r, upper_hsv_r)  # 通道数是 1 

    3.1  ret, dst = cv2.threshold(src, thresh, maxval, type)

    • src: 输入图,只能输入单通道图像,通常来说为灰度图
    • dst: 输出图
    • thresh: 阈值
    • maxval: 当像素值超过了阈值(或者小于阈值,根据type来决定),所赋予的值
    • type:二值化操作的类型,包含以下5种类型: cv2.THRESH_BINARY; cv2.THRESH_BINARY_INV; cv2.THRESH_TRUNC; cv2.THRESH_TOZERO;cv2.THRESH_TOZERO_INV

    • cv2.THRESH_BINARY 超过阈值部分取maxval(最大值),否则取0

    • cv2.THRESH_BINARY_INV THRESH_BINARY的反转
    • cv2.THRESH_TRUNC 大于阈值部分设为阈值,否则不变
    • cv2.THRESH_TOZERO 大于阈值部分不改变,否则设为0
    • cv2.THRESH_TOZERO_INV THRESH_TOZERO的反转
    ret, thresh1 = cv2.threshold(img_gray, 127, 255, cv2.THRESH_BINARY)
    ret, thresh2 = cv2.threshold(img_gray, 127, 255, cv2.THRESH_BINARY_INV)
    ret, thresh3 = cv2.threshold(img_gray, 127, 255, cv2.THRESH_TRUNC)
    ret, thresh4 = cv2.threshold(img_gray, 127, 255, cv2.THRESH_TOZERO)
    ret, thresh5 = cv2.threshold(img_gray, 127, 255, cv2.THRESH_TOZERO_INV)
    
    titles = ['Original Image', 'BINARY', 'BINARY_INV', 'TRUNC', 'TOZERO', 'TOZERO_INV']
    images = [img, thresh1, thresh2, thresh3, thresh4, thresh5]
    
    for i in range(6):
        plt.subplot(2, 3, i + 1), plt.imshow(images[i], 'gray')
        plt.title(titles[i])
        plt.xticks([]), plt.yticks([])
    plt.show()

    4  图像平滑(利用各种卷积核)

    img = cv2.imread('lenaNoise.png')  # 椒盐噪音
    
    cv2.imshow('img', img)
    cv2.waitKey(0)
    cv2.destroyAllWindows()

    # 均值滤波
    # 简单的平均卷积操作
    blur = cv2.blur(img, (3, 3))
    
    cv2.imshow('blur', blur)
    cv2.waitKey(0)
    cv2.destroyAllWindows()
    # 方框滤波
    # 基本和均值一样,可以选择归一化
    box = cv2.boxFilter(img,-1,(3,3), normalize=True)  
    
    cv2.imshow('box', box)
    cv2.waitKey(0)
    cv2.destroyAllWindows()
    # 高斯滤波
    # 高斯模糊的卷积核里的数值是满足高斯分布,相当于更重视中间的
    aussian = cv2.GaussianBlur(img, (5, 5), 1)  
    
    cv2.imshow('aussian', aussian)
    cv2.waitKey(0)
    cv2.destroyAllWindows()
    # 中值滤波
    # 相当于用中值代替
    median = cv2.medianBlur(img, 5)  # 中值滤波
    
    cv2.imshow('median', median)
    cv2.waitKey(0)
    cv2.destroyAllWindows()
    # 展示所有的
    res = np.hstack((blur,aussian,median))
    #print (res)
    cv2.imshow('median vs average', res)
    cv2.waitKey(0)
    cv2.destroyAllWindows()

    5  形态学-腐蚀操作

  • 相关阅读:
    鼠标移上与移出事件
    最小高度 最大高度
    鼠标移上改变光标
    设置圆角
    iframe 子窗口获取父窗口元素 父窗口获取子窗口元素
    parent
    禁用滚动条
    mysql--user表
    mysql客户端连不上数据库
    linux下安装MySQL
  • 原文地址:https://www.cnblogs.com/kongweisi/p/11557126.html
Copyright © 2011-2022 走看看