函数:
[f(n)=frac{n^2}{1+n^2}
]
数列:
[sum^{n}_{n=1} m_n = f(1) + f(2) + f(frac{1}{2}) + ... + f(n) + f(frac{1}{n})
]
推导规律:
[f(1) = frac{1}{2}\
f(2) = frac{2^2}{1+2^2} = frac{4}{5}\
f(frac{1}{2}) = frac{1}{5}\
]
可得:(f(n) + f(frac{1}{n}) = 1)
由此我们可以知道,在数列中存在(n-1)对的(f(n) + f(frac{1}{n})),剩下的一项是(f(1)=frac{1}{2}),易得:
[f(1) + f(2) + f(frac{1}{2}) + ... + f(n) + f(frac{1}{n})\
= frac{1}{2} + n - 1\
= n - frac{1}{2}
]
最后,得到
[sum^{n}_{n=1} m_n = n - frac{1}{2}
]
不知道对不对……