zoukankan      html  css  js  c++  java
  • ResNet

    '''
    导入库
    '''
    import torch
    import torch.nn as nn
    import torchvision
    import torch.utils.data as Data
    from torch.utils import model_zoo
    import math
    from torch.autograd import Variable
    from torchvision.transforms import Compose, ToTensor, Resize
    import gc

    gc.collect()
    model_urls = {
    'resnet18': 'https://download.pytorch.org/models/resnet18-5c106cde.pth',
    'resnet34': 'https://download.pytorch.org/models/resnet34-333f7ec4.pth',
    'resnet50': 'https://download.pytorch.org/models/resnet50-19c8e357.pth',
    'resnet101': 'https://download.pytorch.org/models/resnet101-5d3b4d8f.pth',

    'resnet152': 'https://download.pytorch.org/models/resnet152-b121ed2d.pth',
    }

    # 对输入图像进行处理,转换为(224,224),因为resnet18要求输入为(224,224),并转化为tensor
    def input_transform():
    return Compose([
    Resize(224), # 改变尺寸
    ToTensor(), # 变成tensor
    ])


    # Mnist 手写数字,数据导入
    train_data = torchvision.datasets.MNIST(
    root='mnist/', # 保存或者提取位置
    train=True, # this is training data
    transform=input_transform(), # 转换 PIL.Image or numpy.ndarray 成
    # torch.FloatTensor (C x H x W), 训练的时候 normalize 成 [0.0, 1.0] 区间
    download=True, # 没下载就下载, 下载了就不用再下了
    )

    test_data = torchvision.datasets.MNIST(
    root='mnist/', # 保存或者提取位置
    train=False, # this is training data
    transform=input_transform(), # 转换 PIL.Image or numpy.ndarray 成
    # torch.FloatTensor (C x H x W), 训练的时候 normalize 成 [0.0, 1.0] 区间
    download=True, # 没下载就下载, 下载了就不用再下了
    )

    BATCH_SIZE = 32

    '''
    进行批处理
    '''
    loader = Data.DataLoader(dataset=train_data,
    batch_size=BATCH_SIZE,
    shuffle=True,
    )

    '''
    定义resnet18
    '''


    def conv3x3(in_planes, out_planes, stride=1):
    "3x3 convolution with padding"
    return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride,
    padding=1, bias=False)


    class BasicBlock(nn.Module):
    expansion = 1

    # inplanes其实就是channel,叫法不同
    def __init__(self, inplanes, planes, stride=1, downsample=None):
    super(BasicBlock, self).__init__()
    self.conv1 = conv3x3(inplanes, planes, stride)
    self.bn1 = nn.BatchNorm2d(planes)
    self.relu = nn.ReLU(inplace=True)
    self.conv2 = conv3x3(planes, planes)
    self.bn2 = nn.BatchNorm2d(planes)
    self.downsample = downsample
    self.stride = stride

    def forward(self, x):
    residual = x

    out = self.conv1(x)
    out = self.bn1(out)
    out = self.relu(out)

    out = self.conv2(out)
    out = self.bn2(out)
    # 把shortcut那的channel的维度统一
    if self.downsample is not None:
    residual = self.downsample(x)

    out += residual
    out = self.relu(out)

    return out


    class ResNet(nn.Module):
    def __init__(self, block, layers, num_classes=10):
    self.inplanes = 64
    super(ResNet, self).__init__()
    self.conv1 = nn.Conv2d(1, 64, kernel_size=7, stride=2, padding=3, # 因为mnist为(1,28,28)灰度图,因此输入通道数为1
    bias=False)
    self.bn1 = nn.BatchNorm2d(64)
    self.relu = nn.ReLU(inplace=True)
    self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
    self.layer1 = self._make_layer(block, 64, layers[0])
    self.layer2 = self._make_layer(block, 128, layers[1], stride=2)
    self.layer3 = self._make_layer(block, 256, layers[2], stride=2)
    self.layer4 = self._make_layer(block, 512, layers[3], stride=2)
    self.avgpool = nn.AvgPool2d(7, stride=1)
    self.fc = nn.Linear(512 * block.expansion, num_classes)

    for m in self.modules():
    if isinstance(m, nn.Conv2d):
    n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
    m.weight.data.normal_(0, math.sqrt(2. / n))
    elif isinstance(m, nn.BatchNorm2d):
    m.weight.data.fill_(1)
    m.bias.data.zero_()

    def _make_layer(self, block, planes, blocks, stride=1):
    # downsample 主要用来处理H(x)=F(x)+x中F(x)和xchannel维度不匹配问题
    downsample = None
    # self.inplanes为上个box_block的输出channel,planes为当前box_block块的输入channel
    if stride != 1 or self.inplanes != planes * block.expansion:
    downsample = nn.Sequential(
    nn.Conv2d(self.inplanes, planes * block.expansion,
    kernel_size=1, stride=stride, bias=False),
    nn.BatchNorm2d(planes * block.expansion),
    )

    layers = []
    layers.append(block(self.inplanes, planes, stride, downsample))
    self.inplanes = planes * block.expansion
    for i in range(1, blocks):
    layers.append(block(self.inplanes, planes))

    return nn.Sequential(*layers)

    def forward(self, x):
    x = self.conv1(x)
    x = self.bn1(x)
    x = self.relu(x)
    x = self.maxpool(x)

    x = self.layer1(x)
    x = self.layer2(x)
    x = self.layer3(x)
    x = self.layer4(x)

    x = self.avgpool(x)
    x = x.view(x.size(0), -1)
    x = self.fc(x)

    return x


    def resnet18(pretrained=False, **kwargs):
    """Constructs a ResNet-18 model.
    Args:
    pretrained (bool): If True, returns a model pre-trained on ImageNet
    """
    # [2, 2, 2, 2]和结构图[]X2是对应的
    model = ResNet(BasicBlock, [2, 2, 2, 2], **kwargs)
    if pretrained: # 加载模型权重
    model.load_state_dict(model_zoo.load_url(model_urls['resnet18']))
    return model

    device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
    # print(device)
    net = resnet18().to(device)

    optimizer = torch.optim.Adam(net.parameters(), lr=0.01)
    loss_func = torch.nn.CrossEntropyLoss()
    for epoch in range(3):
    for step, (batch_x, batch_y) in enumerate(loader):
    b_x = Variable(batch_x).to(device)
    b_y = Variable(batch_y).to(device)

    predict = net(b_x)
    loss = loss_func(predict, b_y)

    optimizer.zero_grad()
    loss.backward()
    optimizer.step()

    if step % 5 == 0:
    print('epoch:{}, step:{}, loss:{}'.format(epoch, step, loss))
  • 相关阅读:
    R语言实战实现基于用户的简单的推荐系统(数量较少)
    MapReduce计数器
    MapReduce的Shuffle过程介绍
    R语言两种方式求指定日期所在月的天数
    ggplot2作图详解:入门函数qplot
    R语言中的数据处理包dplyr、tidyr笔记
    Metronic_下拉列表Select2插件的使用
    Linux_使用Linux之安装jdk 7
    HttpClient_HttpClient 4.3.6 HTTP状态管理
    HttpClient_HttpClient 对 cookie的处理
  • 原文地址:https://www.cnblogs.com/kpwong/p/13456391.html
Copyright © 2011-2022 走看看