zoukankan      html  css  js  c++  java
  • 统计学习方法四 朴素贝叶斯分类

    朴素贝叶斯分类

    1,基本概念

        

    2,算法流程

       关键点:理解先验概率,条件概率,最大后验概率,下面是以极大似然估计的

      

      

      

    3,算法改进(贝叶斯估计)

       上述用极大似然估计可能会出现所要估计的概率值为0的情况,改进方法:

      先验概率贝叶斯估计:K表示类别数,λ为参数:0时为极大似然估计;1时为拉普拉斯平滑

        

      条件概率贝叶斯估计:S为某个特征的离散种类

          

      

    4,总结

        

    朴素贝叶斯的主要优点有:

        1)朴素贝叶斯模型发源于古典数学理论,有稳定的分类效率。

        2)对小规模的数据表现很好,能个处理多分类任务,适合增量式训练,尤其是数据量超出内存时,我们可以一批批的去增量训练。

        3)对缺失数据不太敏感,算法也比较简单,常用于文本分类。

        朴素贝叶斯的主要缺点有:   

        1) 理论上,朴素贝叶斯模型与其他分类方法相比具有最小的误差率。但是实际上并非总是如此,这是因为朴素贝叶斯模型假设属性之间相互独立,这个假设在实际应用中往往是不成立的,在属性个数比较多或者属性之间相关性较大时,分类效果不好。而在属性相关性较小时,朴素贝叶斯性能最为良好。对于这一点,有半朴素贝叶斯之类的算法通过考虑部分关联性适度改进。

        2)需要知道先验概率,且先验概率很多时候取决于假设,假设的模型可以有很多种,因此在某些时候会由于假设的先验模型的原因导致预测效果不佳。

        3)由于我们是通过先验和数据来决定后验的概率从而决定分类,所以分类决策存在一定的错误率。

        4)对输入数据的表达形式很敏感。

     朴素贝叶斯适用场景:

        1)不同维度之间相关性较小,离散属性的数据

  • 相关阅读:
    树链剖分 关于点权与边权的转换
    2018 CCPC 吉林站 H Lovers || HDU 6562 (线段树哦)
    统计学习方法(一)概念
    python学习心得(三)
    python学习心得
    Python学习:基本概念
    Python学习(一)
    SparkMLlib聚类学习之KMeans聚类
    SparkMLlib回归算法之决策树
    SparkMLlib学习之线性回归
  • 原文地址:https://www.cnblogs.com/ksWorld/p/7467547.html
Copyright © 2011-2022 走看看