zoukankan      html  css  js  c++  java
  • ACM HDU 3715 Go Deeper

    Go Deeper

    Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)
    Total Submission(s): 309    Accepted Submission(s): 122


    Problem Description
    Here is a procedure's pseudocode:

    go(int dep, int n, int m)
    begin
    output the value of dep.
    if dep < m and x[a[dep]] + x[b[dep]] != c[dep] then go(dep + 1, n, m)
    end

    In this code n is an integer. a, b, c and x are 4 arrays of integers. The index of array always starts from 0. Array a and b consist of non-negative integers smaller than n. Array x consists of only 0 and 1. Array c consists of only 0, 1 and 2. The lengths of array a, b and c are m while the length of array x is n. Given the elements of array a, b, and c, when we call the procedure go(0, n, m) what is the maximal possible value the procedure may output?
     

    Input
    There are multiple test cases. The first line of input is an integer T (0 < T ≤ 100), indicating the number of test cases. Then T test cases follow. Each case starts with a line of 2 integers n and m (0 < n ≤ 200, 0 < m ≤ 10000). Then m lines of 3 integers follow. The i-th(1 ≤ i ≤ m) line of them are ai-1 ,bi-1 and ci-1 (0 ≤ ai-1, bi-1 < n, 0 ≤ ci-1 ≤ 2).
     

    Output
    For each test case, output the result in a single line.
     

    Sample Input
    3 2 1 0 1 0 2 1 0 0 0 2 2 0 1 0 1 1 2
     

    Sample Output
    1 1 2
     

    Author
    CAO, Peng
     

    Source
     

    Recommend
    zhouzeyong
     
     
    #include<stdio.h>
    #include
    <string.h>
    #define MAXN 405
    #define MAXM 160010
    struct Node
    {
    int from,to,next;
    }edge1[MAXM],edge2[MAXM];
    struct Node1
    {
    int a,b,c;
    }s[MAXM];
    int n,m,head1[MAXN],head2[MAXN],visit1[MAXN],visit2[MAXN],tol1,tol2;
    int Tcnt,Bcnt,Belong[MAXN],T[MAXN];
    void add(int a,int b)
    {
    edge1[tol1].from
    =a;edge1[tol1].to=b;edge1[tol1].next=head1[a];head1[a]=tol1++;
    edge2[tol2].from
    =b;edge2[tol2].to=a;edge2[tol2].next=head2[b];head2[b]=tol2++;
    }
    void dfs1(int i)
    {
    int j,u;
    visit1[i]
    =1;
    for(j=head1[i];j!=-1;j=edge1[j].next)
    {
    u
    =edge1[j].to;
    if(!visit1[u]) dfs1(u);
    }
    T[Tcnt
    ++]=i;
    }
    void dfs2(int i)
    {
    int j,u;
    visit2[i]
    =1;
    Belong[i]
    =Bcnt;
    for(j=head2[i];j!=-1;j=edge2[j].next)
    {
    u
    =edge2[j].to;
    if(!visit2[u]) dfs2(u);
    }
    }
    int main()
    {
    int i,ans,right,left,mid,ncase;
    scanf(
    "%d",&ncase);
    while(ncase--)
    {
    scanf(
    "%d%d",&n,&m);
    for(i=0;i<m;i++)
    scanf(
    "%d%d%d",&s[i].a,&s[i].b,&s[i].c);
    left
    =0;
    right
    =m;
    while(left<=right)
    {
    mid
    =(left+right)/2;
    for(i=0;i<2*n;i++)
    {
    head1[i]
    =-1;
    head2[i]
    =-1;
    visit1[i]
    =0;
    visit2[i]
    =0;
    }
    tol1
    =tol2=0;
    Tcnt
    =Bcnt=0;
    for(i=0;i<mid;i++)
    {
    if(s[i].c==0)
    {
    add(s[i].a,s[i].b
    +n);
    add(s[i].b,s[i].a
    +n);
    }
    else if(s[i].c==1)
    {
    add(s[i].a,s[i].b);
    add(s[i].b,s[i].a);
    add(s[i].a
    +n,s[i].b+n);
    add(s[i].b
    +n,s[i].a+n);
    }
    else if(s[i].c==2)
    {
    add(s[i].a
    +n,s[i].b);
    add(s[i].b
    +n,s[i].a);
    }
    }
    for(i=0;i<2*n;i++)
    if(!visit1[i]) dfs1(i);
    for(i=Tcnt-1;i>=0;i--)
    {
    if(!visit2[T[i]])
    {
    dfs2(T[i]);
    Bcnt
    ++;
    }
    }
    for(i=0;i<n;i++)
    {
    if(Belong[i]==Belong[i+n]) break;
    }
    if(i==n)
    {
    ans
    =mid;left=mid+1;
    }
    else right=mid-1;
    }
    printf(
    "%d\n",ans);
    }
    return 0;
    }

  • 相关阅读:
    数据库的架构和优化
    描述一个高性能高可靠的网站架构——如何设计一个秒杀系统
    PHP手册-函数参考-加密扩展
    系统性能指标总结
    PHP实现负载均衡的加权轮询
    PHP生成二维码
    高性能网站架构
    PHP实现Redis的数据结构和LFU/LRU
    缓存的设计及PHP实现LFU
    网络开发库从libuv说到epoll
  • 原文地址:https://www.cnblogs.com/kuangbin/p/2150058.html
Copyright © 2011-2022 走看看