zoukankan      html  css  js  c++  java
  • ACM HDU 3353 Not So Flat After All(简单题)

    Not So Flat After All

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
    Total Submission(s): 517    Accepted Submission(s): 209


    Problem Description
    Any positive integer v can be written as p1 a1 * p2 a2 * . . . pnan where pi is a prime number and ai >= 0. For example: 24 = 23 * 31.
    Pick any two prime numbers p1 and p2 where p1 <> p2. Imagine a two dimensional plane where the powers of p1 are plotted on the x-axis and the powers of p2 on the yaxis. Now any number that can be written as p1 a1 * p2 a2 can be plotted on this plane at location (x, y) = (a1, a2). The figure on the right shows few examples where p1 = 3 and p2 = 2.


    This idea can be extended for any N-Dimensional space where each of the N axes is assigned a unique prime number. Each N-Dimensional space has a unique set of primes. We call such set the Space Identification Set or S for short. |S| (the ordinal of S) is N.
    Any number that can be expressed as a multiplication of pi S (each raised to a power (ai >= 0) can be plotted in this |S|-Dimensional space. The figure at the bottom illustrates this idea for N = 3 and S = {2, 3, 7}. Needless to say, any number that can be plotted on space A can also be plotted on space B as long as SA SB.
    We define the distance between any two points in a given N-Dimensional space to be the sum of units traveled to get from one point to the other while following the grid lines (i.e. movement is always parallel to one of the axes.) For example, in the figure below, the distance between 168 and 882 is 4.
    Given two positive integers, write a program that determines the minimum ordinal of a space where both numbers can be plotted in. The program also determines the distance between these two integers in that space.
     

    Input
    Your program will be tested on one or more test cases. Each test case is specified on a line with two positive integers (0 < A,B < 1, 000, 000) where A * B > 1.
    The last line is made of two zeros.
     

    Output
    For each test case, print the following line:
    k. X:D
    Where k is the test case number (starting at one,) X is the minimum ordinal needed in a space that both A and B can be plotted in. D is the distance between these two points.
    Note: There is a blank space before X.
     

    Sample Input
    168 882 770 792 0 0
     

    Sample Output
    1. 3:4 2. 5:6
     

    Source
     

    Recommend
    lcy
     
     
    #include<stdio.h>
    #include
    <math.h>
    #include
    <iostream>
    #include
    <string.h>
    using namespace std;
    #define MAXN 1000000
    int prime[MAXN],num;
    bool notprime[MAXN];
    int pa[MAXN],ma[MAXN];
    int pb[MAXN],mb[MAXN];
    void PRIME()
    {
    int i,j;
    num
    =0;
    memset(notprime,
    false,sizeof(notprime));
    for(i=2;i<MAXN;i++)
    if(!notprime[i])
    {
    prime[num
    ++]=i;
    for(j=i+i;j<MAXN;j+=i)
    notprime[j]
    =true;
    }
    }
    int main()
    {
    int a,b;
    int na,nb;
    int i,j,t;
    int iCase=0;
    PRIME();
    while(scanf("%d%d",&a,&b))
    {
    if(a==0&&b==0) break;
    iCase
    ++;
    na
    =nb=0;
    for(i=0;i<num&&a>0;i++)
    {
    if(a%prime[i]==0)
    {
    t
    =0;
    while(a%prime[i]==0)
    {
    t
    ++;
    a
    /=prime[i];
    }
    pa[na]
    =prime[i];
    ma[na
    ++]=t;
    }
    }
    for(i=0;i<num&&b>0;i++)
    {
    if(b%prime[i]==0)
    {
    t
    =0;
    while(b%prime[i]==0)
    {
    t
    ++;
    b
    /=prime[i];
    }
    pb[nb]
    =prime[i];
    mb[nb
    ++]=t;
    }
    }
    int X=0,D=0;
    i
    =0;j=0;
    while(i<na&&j<nb)
    {
    if(pa[i]==pb[j])
    {
    X
    ++;
    D
    +=abs(ma[i]-mb[j]);
    i
    ++;
    j
    ++;
    }
    else if(pa[i]<pb[j])
    {
    X
    ++;
    D
    +=ma[i];
    i
    ++;
    }
    else
    {
    X
    ++;
    D
    +=mb[j];
    j
    ++;
    }
    }
    while(i==na&&j<nb)
    {
    X
    ++;
    D
    +=mb[j];
    j
    ++;
    }
    while(i<na&&j==nb)
    {
    X
    ++;
    D
    +=ma[i];
    i
    ++;
    }
    printf(
    "%d. %d:%d\n",iCase,X,D);
    }
    return 0;
    }

  • 相关阅读:
    地税某数据库异常重启和重启后数据库运行缓慢问题的解决过程
    Oracle 索引 详解
    oracle数据库优化基本概念
    oracle物理读和逻辑读
    SQL 优化之该走索引却不走索引的分析(二)
    数据仓库中的分区修剪
    查询低效率的sql语句
    oracle优化的几个简单步骤
    VBS类似于ceil的函数
    ruby符号的应用
  • 原文地址:https://www.cnblogs.com/kuangbin/p/2155667.html
Copyright © 2011-2022 走看看