zoukankan      html  css  js  c++  java
  • POJ1485 Fast Food(DP)

    Fast Food
    Time Limit: 1000MS   Memory Limit: 10000K
    Total Submissions: 1597   Accepted: 553   Special Judge

    Description

    The fastfood chain McBurger owns several restaurants along a highway. Recently, they have decided to build several depots along the highway, each one located at a restaurant and supplying several of the restaurants with the needed ingredients. Naturally, these depots should be placed so that the average distance between a restaurant and its assigned depot is minimized. You are to write a program that computes the optimal positions and assignments of the depots.

    To make this more precise, the management of McBurger has issued the following specification: You will be given the positions of n restaurants along the highway as n integers d1 < d2 < ... < dn (these are the distances measured from the company's headquarter, which happens to be at the same highway). Furthermore, a number k (k <= n) will be given, the number of depots to be built.

    The k depots will be built at the locations of k different restaurants. Each restaurant will be assigned to the closest depot, from which it will then receive its supplies. To minimize shipping costs, the total distance sum, defined as

    n
    ∑ |di - (position of depot serving restaurant i)|
    i=1

    must be as small as possible.

    Write a program that computes the positions of the k depots, such that the total distance sum is minimized.

    Input

    The input file contains several descriptions of fastfood chains. Each description starts with a line containing the two integers n and k. n and k will satisfy 1 <= n <= 200, 1 <= k <= 30, k <= n. Following this will n lines containing one integer each, giving the positions di of the restaurants, ordered increasingly.

    The input file will end with a case starting with n = k = 0. This case should not be processed.

    Output

    For each chain, first output the number of the chain. Then output an optimal placement of the depots as follows: for each depot output a line containing its position and the range of restaurants it serves. If there is more than one optimal solution, output any of them. After the depot descriptions output a line containing the total distance sum, as defined in the problem text.

    Output a blank line after each test case.

    Sample Input

    6 3
    5
    6
    12
    19
    20
    27
    0 0

    Sample Output

    Chain 1
    Depot 1 at restaurant 2 serves restaurants 1 to 3
    Depot 2 at restaurant 4 serves restaurants 4 to 5
    Depot 3 at restaurant 6 serves restaurant 6
    Total distance sum = 8
    

    Source

     
     

    【题目大意】

    一条公路上有n个旅馆,选出其中k个设置仓库,一个仓库可服务若干个旅馆,一个旅馆只需一个仓库服务。问在哪几个旅馆设置仓库,每个仓库服务哪些旅馆,可使得旅馆到仓库的总距离最小,并求出总距离(长理只要求求最后一步)。

    【数据范围】

    1 <= n <= 200, 1 <= k <= 30, k <= n

    【解题思想】

    1、此题属于明显动态规划题,关键点是找状态转移方程。

    2、可以用sum[i][j]表示前i个旅馆,设置j个仓库得到的距离和最小值,那么sum[n][k]即为所求。

    3、找sum[i][j]的子结构,假设前j-1个仓库服务第1个到第k个旅馆,则最后一个仓库服务第k+1个到第i个旅馆。

    4、可以用one[i][j]表示一个仓库服务第i个到第j个旅馆,到这个仓库距离和的最小值。

    5、则得到状态转移方程:sum[i][j]=min(sum[k][j-1]+one[k+1][i]) (j-1<=k<=i-1,min表示所有k取值得到的值中的最小值)。

    6、问题转换为了求one[i][j],即在第i到第j家旅馆中设置一个仓库的总距离。

    7、假设i到j共有奇数家旅馆,我们尝试将仓库放置在中间旅馆,即旅馆(i+j)/2,假设将仓库左移距离x,则右半边所有旅馆到仓库距离均加x,而只有部分左半边旅馆距离减少了x,剩下的减少均小于x,甚至不减少。因此可以得到,将仓库从中间位置左移到任何位置总距离都会增加,右移同理,因此仓库放到旅馆(i+j)/2最合适。

    8、假设i到j共有偶数家旅馆,容易得到将仓库放到(i+j-1)/2和(i+j+1)/2得到的总距离相等(对称性),若将仓库放到(i+j-1)/2,并左移,则用7相似的想法可得知总距离增大,右移情况同理,由此得知仓库放到(i+j-1)/2这个位置即可满足总距离最小。

    9、由7、8得到one[i][j]实际上时将仓库放到(i+j)/2取整位置可得到最小的总距离。

    10、数据范围较小,我们可以计算出一切one[i][j]的组合。

     

    11、由于poj还要求输出在哪几个旅馆设置仓库,每个仓库服务哪些旅馆,因此还需要存储动态规划路径。

    12、可用at[i][j],from[i][j],to[i][j]分别表示sum[i][j]得到最小值时最后一个仓库的位置、服务的起始位置和服务的终止位置。

    13、通过递归输出结果。

     

    #include<stdio.h>
    #include<algorithm>
    #include<string.h>
    using namespace std;
    const int INF=100000000;
    int r[300],sum[300][40],one[300][300];

    int from[300][40],to[300][40],at[300][40];

    int output(int i,int j)
    {
    if(j<=0||i<=0)return 1;
    int num=output(from[i][j]-1,j-1);
    printf("Depot %d at restaurant %d serves ",num,at[i][j]);
    if(from[i][j]==to[i][j])printf("restaurant %d\n",from[i][j]);
    else printf("restaurants %d to %d\n",from[i][j],to[i][j]);
    return num+1;
    }

    int main()
    {
    int n,K,i,j,k,middle;
    int iCase=0;
    while(scanf("%d%d",&n,&K)!=EOF)
    {
    iCase++;
    if(n==0&&K==0)break;
    for(i=1;i<=n;i++)scanf("%d",&r[i]);
    memset(one,0,sizeof(one));
    memset(sum,0,sizeof(sum));
    for(i=1;i<=n;i++)
    {
    for(j=1;j<=n;j++)
    {
    middle=(i+j)/2;
    for(k=i;k<middle;k++)one[i][j]+=r[middle]-r[k];
    for(k=middle+1;k<=j;k++)one[i][j]+=r[k]-r[middle];
    }
    }
    for(i=1;i<=n;i++)sum[i][0]=INF;
    for(i=1;i<=n;i++)
    {
    for(j=1;j<=i&&j<=K;j++)
    {
    sum[i][j]=INF;
    for(k=j-1;k<=i-1;k++)
    {
    int tmp=sum[k][j-1]+one[k+1][i];
    if(tmp<sum[i][j])
    {
    sum[i][j]=tmp;
    from[i][j]=k+1;
    to[i][j]=i;
    at[i][j]=(k+1+i)/2;
    }
    }
    }
    }
    printf("Chain %d\n",iCase);
    output(n,K);
    printf("Total distance sum = %d\n\n",sum[n][K]);
    }
    return 0;
    }

     

  • 相关阅读:
    c语言编程之栈(链表实现)
    c语言编程之队列(链表实现)
    c语言编程之循环队列
    (转)linux下的系统调用函数到内核函数的追踪
    计算机网络
    (转)使用 /proc 文件系统来访问 Linux 内核的内容
    linux驱动之I2C
    (转)Linux 文件系统:procfs, sysfs, debugfs 用法简介
    linux编程之线性表
    linux编程之指针
  • 原文地址:https://www.cnblogs.com/kuangbin/p/2246407.html
Copyright © 2011-2022 走看看