zoukankan      html  css  js  c++  java
  • HDU 2817 A sequence of numbers(数列,简单题)

    A sequence of numbers

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
    Total Submission(s): 1129    Accepted Submission(s): 359


    Problem Description
    Xinlv wrote some sequences on the paper a long time ago, they might be arithmetic or geometric sequences. The numbers are not very clear now, and only the first three numbers of each sequence are recognizable. Xinlv wants to know some numbers in these sequences, and he needs your help.
     
    Input
    The first line contains an integer N, indicting that there are N sequences. Each of the following N lines contain four integers. The first three indicating the first three numbers of the sequence, and the last one is K, indicating that we want to know the K-th numbers of the sequence.

    You can assume 0 < K <= 10^9, and the other three numbers are in the range [0, 2^63). All the numbers of the sequences are integers. And the sequences are non-decreasing.
     
    Output
    Output one line for each test case, that is, the K-th number module (%) 200907.
     
    Sample Input
    2 1 2 3 5 1 2 4 5
     
    Sample Output
    5 16
     
    Source
     
    Recommend
    gaojie
     
     
    给出数列的前三项,数列要么是等差数列、要么是等比数列,求第K项。
    很简单,注意细节处理。
    注意数据类型的溢出,要用long long,中间过程防止溢出
    #include<stdio.h>
    #define MOD 200907
    /*int EE(int x,int n)
    {
    int m=n;
    int power=1;
    int z=x;
    while(m>0)
    {
    if((m%2))
    {
    power=((power*z)%MOD);
    }
    m/=2;
    z=((z*z)%MOD);
    }
    return power;
    }
    */
    long long modular_exponent(long long a,long long b,int n){ //a^b mod n
    long long ret=1;
    for (;b;b>>=1,a=(long long)(((long long)a)*a%n))
    if (b&1)
    ret=(long long)(((long long)ret)*a%n);
    //printf("%d\n",ret);
    return ret;
    }


    int main()
    {
    double a,b,c;
    int T;
    int k;
    scanf("%d",&T);
    while(T--)
    {
    scanf("%lf%lf%lf%d",&a,&b,&c,&k);
    if(a+c==2*b)
    {
    long long a1=(long long )a;
    long long d=(long long )(b-a);
    int ans=(a1%MOD+((k-1)%MOD)*(d%MOD))%MOD;
    printf("%d\n",ans);
    }
    else
    {
    long long a1=(long long )a;
    long long t1=(long long )(a1%MOD);
    double q1=(b/a);
    long long q2=(long long)q1;
    long long q=(long long)(q2%MOD);
    long long tmp=modular_exponent(q,k-1,MOD);
    int ans=(t1*tmp)%MOD;


    printf("%d\n",ans);
    }
    }
    return 0;
    }
  • 相关阅读:
    新浪微博学习的知识点
    新浪项目笔记
    2015年10月20日整理知识
    版本管理工具 (git 或者 svn)
    Coding 代码push/commit/pull/git clone
    fileurlwithpath urlwithstring 这俩有啥区别吗
    正则表达式
    地图
    各种杂项
    实时通讯
  • 原文地址:https://www.cnblogs.com/kuangbin/p/2433909.html
Copyright © 2011-2022 走看看