zoukankan      html  css  js  c++  java
  • POJ 1845 Sumdiv(数论,求A^B的所有约数和)

    Sumdiv
    Time Limit: 1000MS   Memory Limit: 30000K
    Total Submissions: 10071   Accepted: 2357

    Description

    Consider two natural numbers A and B. Let S be the sum of all natural divisors of A^B. Determine S modulo 9901 (the rest of the division of S by 9901).

    Input

    The only line contains the two natural numbers A and B, (0 <= A,B <= 50000000)separated by blanks.

    Output

    The only line of the output will contain S modulo 9901.

    Sample Input

    2 3

    Sample Output

    15

    Hint

    2^3 = 8.
    The natural divisors of 8 are: 1,2,4,8. Their sum is 15.
    15 modulo 9901 is 15 (that should be output).

    Source

     
     
     
    题意:求 A^B的所有约数之和对9901取模后的结果.
        根据唯一分解定理将A进行因式分解可得:A = p1^a1 * p2^a2 * p3^a3 * pn^an.
        A^B=p1^(a1*B)*p2^(a2*B)*...*pn^(an*B);
        A^B的所有约数之和sum=[1+p1+p1^2+...+p1^(a1*B)]*[1+p2+p2^2+...+p2^(a2*B)]*[1+pn+pn^2+...+pn^(an*B)].
     
          等比数列1+pi+pi^2+pi^3+...+pi^n可以由二分求得(即将需要求解的因式分成部分来求解)
           若n为奇数,一共有偶数项,设p为3,则(1+p)+(p^2+p^3)=(1+p)+p^2(1+p)=(1+p^2)*(1+p)
                      1+p+p^2+p^3+........+p^n=(1+p+p^2+....+p^(n/2))*(1+p^(n/2+1));
           若n为偶数,一共有奇数项,设p为4,则(1+p)+p^2+(p^3+p^4)=(1+p)+p^2+p^3(1+p)=(1+p^3)*(1+p)+P^2
                      1+p+p^2+p^3+........+p^n=(1+p+p^2+....+p^(n/2-1))*(1+p^(n/2+1));
     
    /*
    POJ 1845 Sumdiv
    求A^B的所有约数之和%9901
    
    */
    #include<stdio.h>
    #include<math.h>
    #include<iostream>
    #include<algorithm>
    #include<string.h>
    using namespace std;
    
    #define MOD 9901
    
    //******************************************
    //素数筛选和合数分解
    const int MAXN=10000;
    int prime[MAXN+1];
    void getPrime()
    {
        memset(prime,0,sizeof(prime));
        for(int i=2;i<=MAXN;i++)
        {
            if(!prime[i])prime[++prime[0]]=i;
            for(int j=1;j<=prime[0]&&prime[j]<=MAXN/i;j++)
            {
                prime[prime[j]*i]=1;
                if(i%prime[j]==0) break;
            }
        }
    }
    long long factor[100][2];
    int fatCnt;
    int getFactors(long long x)
    {
        fatCnt=0;
        long long tmp=x;
        for(int i=1;prime[i]<=tmp/prime[i];i++)
        {
            factor[fatCnt][1]=0;
            if(tmp%prime[i]==0)
            {
                factor[fatCnt][0]=prime[i];
                while(tmp%prime[i]==0)
                {
                    factor[fatCnt][1]++;
                    tmp/=prime[i];
                }
                fatCnt++;
            }
        }
        if(tmp!=1)
        {
            factor[fatCnt][0]=tmp;
            factor[fatCnt++][1]=1;
        }
        return fatCnt;
    }
    
    //******************************************
    long long pow_m(long long a,long long n)//快速模幂运算
    {
        long long res=1;
        long long tmp=a%MOD;
        while(n)
        {
            if(n&1){res*=tmp;res%=MOD;}
            n>>=1;
            tmp*=tmp;
            tmp%=MOD;
        }
        return res;
    }
    long long sum(long long p,long long n)//计算1+p+p^2+````+p^n
    {
        if(p==0)return 0;
        if(n==0)return 1;
        if(n&1)//奇数
        {
            return ((1+pow_m(p,n/2+1))%MOD*sum(p,n/2)%MOD)%MOD;
        }
        else return ((1+pow_m(p,n/2+1))%MOD*sum(p,n/2-1)+pow_m(p,n/2)%MOD)%MOD;
    
    }
    int main()
    {
        //freopen("in.txt","r",stdin);
        //freopen("out.txt","w",stdout);
        int A,B;
        getPrime();
        while(scanf("%d%d",&A,&B)!=EOF)
        {
            getFactors(A);
            long long ans=1;
            for(int i=0;i<fatCnt;i++)
            {
                ans*=(sum(factor[i][0],B*factor[i][1])%MOD);
                ans%=MOD;
            }
            printf("%I64d\n",ans);
        }
        return 0;
    }
  • 相关阅读:
    opensuse的一些软件使用
    love2d新闻
    好用的在线工具收集
    POJ2531 Network Saboteur 枚举||随机化
    Acdream Path 动态规划
    Acdream Xor 简单数学
    POJ2676 Sudoku 搜索
    Acdream 1015 Double Kings 搜索
    Acdream Multiplication 基础题
    Acdream Cut 贪心
  • 原文地址:https://www.cnblogs.com/kuangbin/p/2631225.html
Copyright © 2011-2022 走看看