zoukankan      html  css  js  c++  java
  • POJ 3169 Layout(差分约束+SPFA)

    Layout
    Time Limit: 1000MS   Memory Limit: 65536K
    Total Submissions: 4641   Accepted: 2240

    Description

    Like everyone else, cows like to stand close to their friends when queuing for feed. FJ has N (2 <= N <= 1,000) cows numbered 1..N standing along a straight line waiting for feed. The cows are standing in the same order as they are numbered, and since they can be rather pushy, it is possible that two or more cows can line up at exactly the same location (that is, if we think of each cow as being located at some coordinate on a number line, then it is possible for two or more cows to share the same coordinate).

    Some cows like each other and want to be within a certain distance of each other in line. Some really dislike each other and want to be separated by at least a certain distance. A list of ML (1 <= ML <= 10,000) constraints describes which cows like each other and the maximum distance by which they may be separated; a subsequent list of MD constraints (1 <= MD <= 10,000) tells which cows dislike each other and the minimum distance by which they must be separated.

    Your job is to compute, if possible, the maximum possible distance between cow 1 and cow N that satisfies the distance constraints.

    Input

    Line 1: Three space-separated integers: N, ML, and MD.

    Lines 2..ML+1: Each line contains three space-separated positive integers: A, B, and D, with 1 <= A < B <= N. Cows A and B must be at most D (1 <= D <= 1,000,000) apart.

    Lines ML+2..ML+MD+1: Each line contains three space-separated positive integers: A, B, and D, with 1 <= A < B <= N. Cows A and B must be at least D (1 <= D <= 1,000,000) apart.

    Output

    Line 1: A single integer. If no line-up is possible, output -1. If cows 1 and N can be arbitrarily far apart, output -2. Otherwise output the greatest possible distance between cows 1 and N.

    Sample Input

    4 2 1
    1 3 10
    2 4 20
    2 3 3

    Sample Output

    27

    Hint

    Explanation of the sample:

    There are 4 cows. Cows #1 and #3 must be no more than 10 units apart, cows #2 and #4 must be no more than 20 units apart, and cows #2 and #3 dislike each other and must be no fewer than 3 units apart.

    The best layout, in terms of coordinates on a number line, is to put cow #1 at 0, cow #2 at 7, cow #3 at 10, and cow #4 at 27.

    Source

     
     
     
    /*
    POJ 3169 Layout
    
    差分约束+SPFA
    */
    //队列实现SPFA,需要有负环回路判断
    #include<stdio.h>
    #include<iostream>
    #include<algorithm>
    #include<string.h>
    using namespace std;
    
    const int MAXN=1010;
    const int MAXE=20020;
    const int INF=0x3f3f3f3f;
    int head[MAXN];//每个结点的头指针
    int vis[MAXN];//在队列标志
    int cnt[MAXN];//每个点的入队列次数
    int que[MAXN];//SPFA循环指针
    int dist[MAXN];
    
    struct Edge
    {
        int to;
        int v;
        int next;
    }edge[MAXE];
    int tol;
    void add(int a,int b,int v)//加边
    {
        edge[tol].to=b;
        edge[tol].v=v;
        edge[tol].next=head[a];
        head[a]=tol++;
    }
    bool SPFA(int start,int n)
    {
        int front=0,rear=0;
        for(int v=1;v<=n;v++)//初始化
        {
            if(v==start)
            {
                que[rear++]=v;
                vis[v]=true;
                cnt[v]=1;
                dist[v]=0;
            }
            else
            {
                vis[v]=false;
                cnt[v]=0;
                dist[v]=INF;
            }
        }
        while(front!=rear)
        {
            int u=que[front++];
            vis[u]=false;
            if(front>=MAXN)front=0;
            for(int i=head[u];i!=-1;i=edge[i].next)
            {
                int v=edge[i].to;
                if(dist[v]>dist[u]+edge[i].v)
                {
                    dist[v]=dist[u]+edge[i].v;
                    if(!vis[v])
                    {
                        vis[v]=true;
                        que[rear++]=v;
                        if(rear>=MAXN)rear=0;
                        if(++cnt[v]>n) return false;
                        //cnt[i]为入队列次数,用来判断是否存在负环回来
                        //这条好像放在这个if外面也可以??
                    }
                }
            }
        }
        return true;
    }
    int main()
    {
        //freopen("in.txt","r",stdin);
        //freopen("out.txt","w",stdout);
        int n;
        int ML,MD;
        int a,b,c;
        while(scanf("%d%d%d",&n,&ML,&MD)!=EOF)
        {
            tol=0;//加边计数,这个不要忘
            memset(head,-1,sizeof(head));
            while(ML--)
            {
                scanf("%d%d%d",&a,&b,&c);
                if(a>b)swap(a,b);//注意加边顺序
                add(a,b,c);
                //大-小<=c ,有向边(小,大):c
            }
            while(MD--)
            {
                scanf("%d%d%d",&a,&b,&c);
                if(a<b)swap(a,b);
                add(a,b,-c);
                //大-小>=c,小-大<=-c,有向边(大,小):-c
            }
            if(!SPFA(1,n)) printf("-1\n");//无解
            else if(dist[n]==INF) printf("-2\n");
            else printf("%d\n",dist[n]);
        }
        return 0;
    }

    代码2:

    /*
    POJ 3169
    差分约束+BellmenFord
    */
    #include<stdio.h>
    #include<algorithm>
    #include<string.h>
    #include<iostream>
    using namespace std;
    const int INF=0x3f3f3f3f;
    const int MAXN=1010;
    const int MAXE=20020;
    
    int dist[MAXN];
    
    int edge[MAXE][3];//存边
    int tol;//边的总数
    
    bool bellman(int start,int n)
    {
        for(int i=1;i<=n;i++)dist[i]=INF;
        dist[start]=0;
        for(int i=1;i<n;i++)//最多做n-1次
        {
            bool flag=false;//优化,没有更新就跳出
            for(int j=0;j<tol;j++)
            {
                int u=edge[j][0];
                int v=edge[j][1];
                if(dist[v]>dist[u]+edge[j][2])
                {
                    dist[v]=dist[u]+edge[j][2];
                    flag=true;
                }
            }
            if(!flag)break;
        }
        for(int j=0;j<tol;j++)
            if(dist[edge[j][1]] > dist[edge[j][0]]+edge[j][2])
              return false;
        return true;
    }
    int main()
    {
        //freopen("in.txt","r",stdin);
        //freopen("out.txt","w",stdout);
        int n;
        int ML,MD;
        int a,b,c;
        while(scanf("%d%d%d",&n,&ML,&MD)!=EOF)
        {
            tol=0;
            while(ML--)
            {
                scanf("%d%d%d",&a,&b,&c);
                if(a>b)swap(a,b);
                edge[tol][0]=a;
                edge[tol][1]=b;
                edge[tol][2]=c;
                tol++;
            }
            while(MD--)
            {
                scanf("%d%d%d",&a,&b,&c);
                if(a<b)swap(a,b);
                edge[tol][0]=a;
                edge[tol][1]=b;
                edge[tol][2]=-c;
                tol++;
            }
            if(!bellman(1,n))printf("-1\n");
            else if(dist[n]==INF)printf("-2\n");
            else printf("%d\n",dist[n]);
        }
        return 0;
    }
  • 相关阅读:
    iOS应用开发最佳实践
    Pywinauto 基于Win32 程序的自动化功能测试工具
    通信系统概论---电路交换与分组交换
    手动设置3G的wifi迷你无线路由
    作为一个软件测试工作者的思考
    中国人咋对“拼爹”现象如此诟病?
    HLS协议实现
    div:给div加滚动栏 div的滚动栏设置
    关于PCA算法的一点学习总结
    搜索引擎技术之概要预览
  • 原文地址:https://www.cnblogs.com/kuangbin/p/2644643.html
Copyright © 2011-2022 走看看