zoukankan      html  css  js  c++  java
  • HDU 3662 3D Convex Hull (三维凸包,求凸包多边形个数)

    3D Convex Hull

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
    Total Submission(s): 592    Accepted Submission(s): 328


    Problem Description
    There are N points in 3D-space which make up a 3D-Convex hull*. How many faces does the 3D-convexhull have? It is guaranteed that all the points are not in the same plane.

    In case you don’t know the definition of convex hull, here we give you a clarification from Wikipedia:
    *Convex hull: In mathematics, the convex hull, for a set of points X in a real vector space V, is the minimal convex set containing X.
     
    Input
    There are several test cases. In each case the first line contains an integer N indicates the number of 3D-points (3< N <= 300), and then N lines follow, each line contains three numbers x, y, z (between -10000 and 10000) indicate the 3d-position of a point.
     
    Output
    Output the number of faces of the 3D-Convex hull.
     
    Sample Input
    7 1 1 0 1 -1 0 -1 1 0 -1 -1 0 0 0 1 0 0 0 0 0 -0.1 7 1 1 0 1 -1 0 -1 1 0 -1 -1 0 0 0 1 0 0 0 0 0 0.1
     
    Sample Output
    8 5
     
    Source
     
    Recommend
    lcy
     
     
     
    直接套模板:
    /*
    HDU 3662
    求凸包表面多边形个数
    */
    
    #include<stdio.h>
    #include<algorithm>
    #include<string.h>
    #include<math.h>
    #include<stdlib.h>
    using namespace std;
    const int MAXN=550;
    const double eps=1e-8;
    
    struct Point
    {
        double x,y,z;
        Point(){}
    
        Point(double xx,double yy,double zz):x(xx),y(yy),z(zz){}
    
        //两向量之差
        Point operator -(const Point p1)
        {
            return Point(x-p1.x,y-p1.y,z-p1.z);
        }
    
        //两向量之和
        Point operator +(const Point p1)
        {
            return Point(x+p1.x,y+p1.y,z+p1.z);
        }
    
        //叉乘
        Point operator *(const Point p)
        {
            return Point(y*p.z-z*p.y,z*p.x-x*p.z,x*p.y-y*p.x);
        }
    
        Point operator *(double d)
        {
            return Point(x*d,y*d,z*d);
        }
    
        Point operator / (double d)
        {
            return Point(x/d,y/d,z/d);
        }
    
        //点乘
        double  operator ^(Point p)
        {
            return (x*p.x+y*p.y+z*p.z);
        }
    };
    
    struct CH3D
    {
        struct face
        {
            //表示凸包一个面上的三个点的编号
            int a,b,c;
            //表示该面是否属于最终凸包上的面
            bool ok;
        };
        //初始顶点数
        int n;
        //初始顶点
        Point P[MAXN];
        //凸包表面的三角形数
        int num;
        //凸包表面的三角形
        face F[8*MAXN];
        //凸包表面的三角形
        int g[MAXN][MAXN];
        //向量长度
        double vlen(Point a)
        {
            return sqrt(a.x*a.x+a.y*a.y+a.z*a.z);
        }
        //叉乘
        Point cross(const Point &a,const Point &b,const Point &c)
        {
            return Point((b.y-a.y)*(c.z-a.z)-(b.z-a.z)*(c.y-a.y),
                         (b.z-a.z)*(c.x-a.x)-(b.x-a.x)*(c.z-a.z),
                         (b.x-a.x)*(c.y-a.y)-(b.y-a.y)*(c.x-a.x)
                         );
        }
        //三角形面积*2
        double area(Point a,Point b,Point c)
        {
            return vlen((b-a)*(c-a));
        }
        //四面体有向体积*6
        double volume(Point a,Point b,Point c,Point d)
        {
            return (b-a)*(c-a)^(d-a);
        }
        //正:点在面同向
        double dblcmp(Point &p,face &f)
        {
            Point m=P[f.b]-P[f.a];
            Point n=P[f.c]-P[f.a];
            Point t=p-P[f.a];
            return (m*n)^t;
        }
        void deal(int p,int a,int b)
        {
            int f=g[a][b];//搜索与该边相邻的另一个平面
            face add;
            if(F[f].ok)
            {
                if(dblcmp(P[p],F[f])>eps)
                  dfs(p,f);
                else
                {
                    add.a=b;
                    add.b=a;
                    add.c=p;//这里注意顺序,要成右手系
                    add.ok=true;
                    g[p][b]=g[a][p]=g[b][a]=num;
                    F[num++]=add;
                }
            }
        }
        void dfs(int p,int now)//递归搜索所有应该从凸包内删除的面
        {
             F[now].ok=0;
             deal(p,F[now].b,F[now].a);
             deal(p,F[now].c,F[now].b);
             deal(p,F[now].a,F[now].c);
        }
        bool same(int s,int t)
        {
            Point &a=P[F[s].a];
            Point &b=P[F[s].b];
            Point &c=P[F[s].c];
            return fabs(volume(a,b,c,P[F[t].a]))<eps &&
                   fabs(volume(a,b,c,P[F[t].b]))<eps &&
                   fabs(volume(a,b,c,P[F[t].c]))<eps;
        }
        //构建三维凸包
        void create()
        {
            int i,j,tmp;
            face add;
    
            num=0;
            if(n<4)return;
        //**********************************************
            //此段是为了保证前四个点不共面
            bool flag=true;
            for(i=1;i<n;i++)
            {
                if(vlen(P[0]-P[i])>eps)
                {
                    swap(P[1],P[i]);
                    flag=false;
                    break;
                }
            }
            if(flag)return;
            flag=true;
            //使前三个点不共线
            for(i=2;i<n;i++)
            {
                if(vlen((P[0]-P[1])*(P[1]-P[i]))>eps)
                {
                    swap(P[2],P[i]);
                    flag=false;
                    break;
                }
            }
            if(flag)return;
            flag=true;
            //使前四个点不共面
            for(int i=3;i<n;i++)
            {
                if(fabs((P[0]-P[1])*(P[1]-P[2])^(P[0]-P[i]))>eps)
                {
                    swap(P[3],P[i]);
                    flag=false;
                    break;
                }
            }
            if(flag)return;
        //*****************************************
            for(i=0;i<4;i++)
            {
                add.a=(i+1)%4;
                add.b=(i+2)%4;
                add.c=(i+3)%4;
                add.ok=true;
                if(dblcmp(P[i],add)>0)swap(add.b,add.c);
                g[add.a][add.b]=g[add.b][add.c]=g[add.c][add.a]=num;
                F[num++]=add;
            }
            for(i=4;i<n;i++)
            {
                for(j=0;j<num;j++)
                {
                    if(F[j].ok&&dblcmp(P[i],F[j])>eps)
                    {
                        dfs(i,j);
                        break;
                    }
                }
            }
            tmp=num;
            for(i=num=0;i<tmp;i++)
              if(F[i].ok)
                F[num++]=F[i];
    
        }
        //表面积
        double area()
        {
            double res=0;
            if(n==3)
            {
                Point p=cross(P[0],P[1],P[2]);
                res=vlen(p)/2.0;
                return res;
            }
            for(int i=0;i<num;i++)
              res+=area(P[F[i].a],P[F[i].b],P[F[i].c]);
            return res/2.0;
        }
        double volume()
        {
            double res=0;
            Point tmp(0,0,0);
            for(int i=0;i<num;i++)
               res+=volume(tmp,P[F[i].a],P[F[i].b],P[F[i].c]);
            return fabs(res/6.0);
        }
        //表面三角形个数
        int triangle()
        {
            return num;
        }
        //表面多边形个数
        int polygon()
        {
            int i,j,res,flag;
            for(i=res=0;i<num;i++)
            {
                flag=1;
                for(j=0;j<i;j++)
                  if(same(i,j))
                  {
                      flag=0;
                      break;
                  }
                res+=flag;
            }
            return res;
        }
        //三维凸包重心
        Point barycenter()
        {
            Point ans(0,0,0),o(0,0,0);
            double all=0;
            for(int i=0;i<num;i++)
            {
                double vol=volume(o,P[F[i].a],P[F[i].b],P[F[i].c]);
                ans=ans+(o+P[F[i].a]+P[F[i].b]+P[F[i].c])/4.0*vol;
                all+=vol;
            }
            ans=ans/all;
            return ans;
        }
        //点到面的距离
        double ptoface(Point p,int i)
        {
            return fabs(volume(P[F[i].a],P[F[i].b],P[F[i].c],p)/vlen((P[F[i].b]-P[F[i].a])*(P[F[i].c]-P[F[i].a])));
        }
    };
    CH3D hull;
    int main()
    {
       // freopen("in.txt","r",stdin);
       // freopen("out.txt","w",stdout);
        while(scanf("%d",&hull.n)==1)
        {
            for(int i=0;i<hull.n;i++)
            {
                scanf("%lf%lf%lf",&hull.P[i].x,&hull.P[i].y,&hull.P[i].z);
            }
            hull.create();
            printf("%d\n",hull.polygon());
        }
        return 0;
    }
  • 相关阅读:
    Android的NDK开发(5)————Android JNI层实现文件的read、write与seek操作
    android Context
    android 控件放在 listview 的下方 并且在 屏幕底部
    android Activity 布局 和 控件属性
    有关vtun和虚拟网卡要做的实验
    android xml pull 解析 豆瓣书籍
    android UI设计之 背景透明色 项目资源文件关系
    android 资源引用 自定义标题栏
    真机调试Unable to open sync connection!
    C++ 编译预处理
  • 原文地址:https://www.cnblogs.com/kuangbin/p/2682544.html
Copyright © 2011-2022 走看看