Time Limit: 1000MS | Memory Limit: 65536K | |
Total Submissions: 13977 | Accepted: 6381 |
Description
Bessie has gone to the mall's jewelry store and spies a charm bracelet. Of course, she'd like to fill it with the best charms possible from the N (1 ≤ N ≤ 3,402) available charms. Each charm i in the supplied list has a weight Wi (1 ≤ Wi ≤ 400), a 'desirability' factor Di (1 ≤ Di ≤ 100), and can be used at most once. Bessie can only support a charm bracelet whose weight is no more than M (1 ≤ M ≤ 12,880).
Given that weight limit as a constraint and a list of the charms with their weights and desirability rating, deduce the maximum possible sum of ratings.
Input
* Line 1: Two space-separated integers: N and M
* Lines 2..N+1: Line i+1 describes charm i with two space-separated integers: Wi and Di
Output
* Line 1: A single integer that is the greatest sum of charm desirabilities that can be achieved given the weight constraints
Sample Input
4 6 1 4 2 6 3 12 2 7
Sample Output
23
Source
/* 简单的01背包 */ #include<stdio.h> #include<iostream> #include<string.h> #include<algorithm> using namespace std; const int MAXN=3500; int dp[13000]; int value[MAXN];//每袋的价格 int weight[MAXN];//每袋的重量 int nValue,nKind; //0-1背包,代价为cost,获得的价值为weight void ZeroOnePack(int cost,int weight) { for(int i=nValue;i>=cost;i--) dp[i]=max(dp[i],dp[i-cost]+weight); } int main() { while(scanf("%d%d",&nKind,&nValue)!=EOF) { for(int i=0;i<nKind;i++)scanf("%d%d",&value[i],&weight[i]); memset(dp,0,sizeof(dp)); for(int i=0;i<nKind;i++) ZeroOnePack(value[i],weight[i]); printf("%d\n",dp[nValue]); } return 0; }