zoukankan      html  css  js  c++  java
  • POJ 3264 Balanced Lineup(RMQ)

    Balanced Lineup
    Time Limit: 5000MS   Memory Limit: 65536K
    Total Submissions: 24349   Accepted: 11348
    Case Time Limit: 2000MS

    Description

    For the daily milking, Farmer John's N cows (1 ≤ N ≤ 50,000) always line up in the same order. One day Farmer John decides to organize a game of Ultimate Frisbee with some of the cows. To keep things simple, he will take a contiguous range of cows from the milking lineup to play the game. However, for all the cows to have fun they should not differ too much in height.

    Farmer John has made a list of Q (1 ≤ Q ≤ 200,000) potential groups of cows and their heights (1 ≤ height ≤ 1,000,000). For each group, he wants your help to determine the difference in height between the shortest and the tallest cow in the group.

    Input

    Line 1: Two space-separated integers, N and Q.
    Lines 2..N+1: Line i+1 contains a single integer that is the height of cow i
    Lines N+2..N+Q+1: Two integers A and B (1 ≤ ABN), representing the range of cows from A to B inclusive.

    Output

    Lines 1..Q: Each line contains a single integer that is a response to a reply and indicates the difference in height between the tallest and shortest cow in the range.

    Sample Input

    6 3
    1
    7
    3
    4
    2
    5
    1 5
    4 6
    2 2

    Sample Output

    6
    3
    0

    Source

     
    #include<stdio.h>
    #include<iostream>
    #include<math.h>
    #include<string.h>
    using namespace std;
    const int MAXN=50050;
    
    int dpmax[MAXN][20];
    int dpmin[MAXN][20];
    
    void makeMaxRmq(int n,int b[])
    {
        for(int i=0;i<n;i++)
           dpmax[i][0]=b[i];
        for(int j=1;(1<<j)<=n;j++)
          for(int i=0;i+(1<<j)-1<n;i++)
            dpmax[i][j]=max(dpmax[i][j-1],dpmax[i+(1<<(j-1))][j-1]);
    }
    int getMax(int u,int v)
    {
        int k=(int)(log(v-u+1.0)/log(2.0));
        return max(dpmax[u][k],dpmax[v-(1<<k)+1][k]);
    }
    void makeMinRmq(int n,int b[])
    {
        for(int i=0;i<n;i++)
           dpmin[i][0]=b[i];
        for(int j=1;(1<<j)<=n;j++)
          for(int i=0;i+(1<<j)-1<n;i++)
            dpmin[i][j]=min(dpmin[i][j-1],dpmin[i+(1<<(j-1))][j-1]);
    }
    int getMin(int u,int v)
    {
        int k=(int)(log(v-u+1.0)/log(2.0));
        return min(dpmin[u][k],dpmin[v-(1<<k)+1][k]);
    }
    
    int a[MAXN];
    int main()
    {
        int n,Q;
        int u,v;
        while(scanf("%d%d",&n,&Q)!=EOF)
        {
            for(int i=0;i<n;i++)
               scanf("%d",&a[i]);
            makeMaxRmq(n,a);
            makeMinRmq(n,a);
            while(Q--)
            {
                scanf("%d%d",&u,&v);
                u--;
                v--;
                int t1=getMax(u,v);
                int t2=getMin(u,v);
                printf("%d\n",t1-t2);
            }
        }
        return 0;
    }
  • 相关阅读:
    计算器第七次作业——总结
    计算器第六次作业——界面
    链表反转
    计算器第五次作业——更新
    求圆的面积
    计算器第四次作业——实现
    计算器第三次作业——完善
    计算器第三次作业——初步
    成长函数
    单个H扩展到多个H时,机器学习的保证
  • 原文地址:https://www.cnblogs.com/kuangbin/p/2687220.html
Copyright © 2011-2022 走看看