Space Elevator
Time Limit: 1000MS | Memory Limit: 65536K | |
Total Submissions: 6422 | Accepted: 2965 |
Description
The cows are going to space! They plan to achieve orbit by building a sort of space elevator: a giant tower of blocks. They have K (1 <= K <= 400) different types of blocks with which to build the tower. Each block of type i has height h_i (1 <= h_i <= 100) and is available in quantity c_i (1 <= c_i <= 10). Due to possible damage caused by cosmic rays, no part of a block of type i can exceed a maximum altitude a_i (1 <= a_i <= 40000).
Help the cows build the tallest space elevator possible by stacking blocks on top of each other according to the rules.
Help the cows build the tallest space elevator possible by stacking blocks on top of each other according to the rules.
Input
* Line 1: A single integer, K
* Lines 2..K+1: Each line contains three space-separated integers: h_i, a_i, and c_i. Line i+1 describes block type i.
* Lines 2..K+1: Each line contains three space-separated integers: h_i, a_i, and c_i. Line i+1 describes block type i.
Output
* Line 1: A single integer H, the maximum height of a tower that can be built
Sample Input
3 7 40 3 5 23 8 2 52 6
Sample Output
48
Hint
OUTPUT DETAILS:
From the bottom: 3 blocks of type 2, below 3 of type 1, below 6 of type 3. Stacking 4 blocks of type 2 and 3 of type 1 is not legal, since the top of the last type 1 block would exceed height 40.
From the bottom: 3 blocks of type 2, below 3 of type 1, below 6 of type 3. Stacking 4 blocks of type 2 and 3 of type 1 is not legal, since the top of the last type 1 block would exceed height 40.
Source
先按照限制的高度进行从小到大排序。之后就是简单的多重背包了。
/* POJ 2392 G++ 157ms */ #include<stdio.h> #include<string.h> #include<iostream> #include<algorithm> using namespace std; const int MAXN=410; struct Node { int h,c; int lim; }node[MAXN]; int dp[50000]; int H; void ZeroOnePack(int cost,int weight,int lim) { for(int i=lim;i>=cost;i--) dp[i]=max(dp[i],dp[i-cost]+weight); } void CompletePack(int cost,int weight,int lim) { for(int i=cost;i<=lim;i++) dp[i]=max(dp[i],dp[i-cost]+weight); } void MultiplePack(int cost,int weight,int amount,int lim) { if(cost*amount>=lim)CompletePack(cost,weight,lim); else { for(int k=1;k<amount;) { ZeroOnePack(k*cost,k*weight,lim); amount-=k; k<<=1; } ZeroOnePack(amount*cost,amount*weight,lim); } } bool cmp(Node a,Node b) { return a.lim<b.lim; } int main() { //freopen("in.txt","r",stdin); //freopen("out.txt","w",stdout); int n; while(scanf("%d",&n)!=EOF) { H=0; for(int i=0;i<n;i++) { scanf("%d%d%d",&node[i].h,&node[i].lim,&node[i].c); if(node[i].lim>H)H=node[i].lim; } for(int i=0;i<=H;i++)dp[i]=0; sort(node,node+n,cmp); for(int i=0;i<n;i++) MultiplePack(node[i].h,node[i].h,node[i].c,node[i].lim); int ans=0; for(int i=0;i<=H;i++)ans=max(ans,dp[i]);//这个过程一定要 printf("%d\n",ans); } return 0; }
/* POJ 2392 G++ 141ms */ #include<stdio.h> #include<string.h> #include<iostream> #include<algorithm> using namespace std; const int MAXN=410; struct Node { int h,c; int lim; }node[MAXN]; bool dp[50000]; int H; int ans; void ZeroOnePack(int cost,int lim) { for(int i=lim;i>=cost;i--) if(dp[i-cost]&&(!dp[i])) { dp[i]=true; ans=max(ans,i); } } void CompletePack(int cost,int lim) { for(int i=cost;i<=lim;i++) if(dp[i-cost]&&(!dp[i])) { dp[i]=true; ans=max(ans,i); } } void MultiplePack(int cost,int amount,int lim) { if(cost*amount>=lim)CompletePack(cost,lim); else { for(int k=1;k<amount;) { ZeroOnePack(k*cost,lim); amount-=k; k<<=1; } ZeroOnePack(amount*cost,lim); } } bool cmp(Node a,Node b) { return a.lim<b.lim; } int main() { //freopen("in.txt","r",stdin); //freopen("out.txt","w",stdout); int n; while(scanf("%d",&n)!=EOF) { H=0; for(int i=0;i<n;i++) { scanf("%d%d%d",&node[i].h,&node[i].lim,&node[i].c); if(node[i].lim>H)H=node[i].lim; } for(int i=0;i<=H;i++)dp[i]=false; dp[0]=true; sort(node,node+n,cmp); ans=0; for(int i=0;i<n;i++) MultiplePack(node[i].h,node[i].c,node[i].lim); printf("%d\n",ans); } return 0; }