zoukankan      html  css  js  c++  java
  • POJ 3680 Intervals(费用流)

    Intervals
    Time Limit: 5000MS   Memory Limit: 65536K
    Total Submissions: 5762   Accepted: 2288

    Description

    You are given N weighted open intervals. The ith interval covers (aibi) and weighs wi. Your task is to pick some of the intervals to maximize the total weights under the limit that no point in the real axis is covered more than k times.

    Input

    The first line of input is the number of test case.
    The first line of each test case contains two integers, N and K (1 ≤ K ≤ N ≤ 200).
    The next N line each contain three integers aibiwi(1 ≤ ai < bi ≤ 100,000, 1 ≤ wi ≤ 100,000) describing the intervals. 
    There is a blank line before each test case.

    Output

    For each test case output the maximum total weights in a separate line.

    Sample Input

    4
    
    3 1
    1 2 2
    2 3 4
    3 4 8
    
    3 1
    1 3 2
    2 3 4
    3 4 8
    
    3 1
    1 100000 100000
    1 2 3
    100 200 300
    
    3 2
    1 100000 100000
    1 150 301
    100 200 300
    

    Sample Output

    14
    12
    100000
    100301
    

    Source

    一条线段看成两个点。

    #include <stdio.h>
    #include <algorithm>
    #include <string.h>
    #include <iostream>
    #include <string>
    #include <queue>
    using namespace std;
    
    const int MAXN = 10000;
    const int MAXM = 100000;
    const int INF = 0x3f3f3f3f;
    struct Edge
    {
        int to,next,cap,flow,cost;
    }edge[MAXM];
    int head[MAXN],tol;
    int pre[MAXN],dis[MAXN];
    bool vis[MAXN];
    int N;//节点总个数,节点编号从0~N-1
    void init(int n)
    {
        N = n;
        tol = 0;
        memset(head,-1,sizeof(head));
    }
    void addedge(int u,int v,int cap,int cost)
    {
        edge[tol].to = v;
        edge[tol].cap = cap;
        edge[tol].cost = cost;
        edge[tol].flow = 0;
        edge[tol].next = head[u];
        head[u] = tol++;
        edge[tol].to = u;
        edge[tol].cap = 0;
        edge[tol].cost = -cost;
        edge[tol].flow = 0;
        edge[tol].next = head[v];
        head[v] = tol++;
    }
    bool spfa(int s,int t)
    {
        queue<int>q;
        for(int i = 0;i < N;i++)
        {
            dis[i] = INF;
            vis[i] = false;
            pre[i] = -1;
        }
        dis[s] = 0;
        vis[s] = true;
        q.push(s);
        while(!q.empty())
        {
            int u = q.front();
            q.pop();
            vis[u] = false;
            for(int i = head[u]; i != -1;i = edge[i].next)
            {
                int v = edge[i].to;
                if(edge[i].cap > edge[i].flow &&
                   dis[v] > dis[u] + edge[i].cost )
                {
                    dis[v] = dis[u] + edge[i].cost;
                    pre[v] = i;
                    if(!vis[v])
                    {
                        vis[v] = true;
                        q.push(v);
                    }
                }
            }
        }
        if(pre[t] == -1)return false;
        else return true;
    }
    //返回的是最大流,cost存的是最小费用
    int minCostMaxflow(int s,int t,int &cost)
    {
        int flow = 0;
        cost = 0;
        while(spfa(s,t))
        {
            int Min = INF;
            for(int i = pre[t];i != -1;i = pre[edge[i^1].to])
            {
                if(Min > edge[i].cap - edge[i].flow)
                    Min = edge[i].cap - edge[i].flow;
            }
            for(int i = pre[t];i != -1;i = pre[edge[i^1].to])
            {
                edge[i].flow += Min;
                edge[i^1].flow -= Min;
                cost += edge[i].cost * Min;
            }
            flow += Min;
        }
        return flow;
    }
    
    pair<int,int>p[220];
    int main()
    {
        int T;
        int n,k;
        scanf("%d",&T);
        while(T--)
        {
            scanf("%d%d",&n,&k);
            init(2*n+3);
            int a,b,w;
            for(int i = 1;i <= n;i++)
            {
                scanf("%d%d%d",&a,&b,&w);
                p[i] = make_pair(a,b);
                addedge(2*i-1,2*i,1,-w);
                addedge(2*i-1,2*i,INF,0);
                addedge(0,2*i-1,1,0);
                addedge(2*i,2*n+2,1,0);
            }
            addedge(2*n+1,0,k,0);
            for(int i = 1;i <= n;i++)
                for(int j = 1;j <= n;j++)
                    if(p[j].first >= p[i].second )
                        addedge(2*i,2*j-1,INF,0);
            int cost = 0;
            minCostMaxflow(2*n+1,2*n+2,cost);
            printf("%d
    ",-cost);
    
        }
        return 0;
    }
  • 相关阅读:
    mysql的启动出现错误 install/remove denied错误操作
    mybatis的开发方式
    mysql绿色版安装出现1067的错误原因
    线程池中对于异常的处理操作
    spring中的aync注解的使用与事务操作
    互联网金融产品经理 修炼之道
    几句牢骚
    做自己
    自动加载与访问权限
    mvc模式实现
  • 原文地址:https://www.cnblogs.com/kuangbin/p/3236051.html
Copyright © 2011-2022 走看看