zoukankan      html  css  js  c++  java
  • HDU 1695 GCD (莫比乌斯反演)

    GCD

    Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
    Total Submission(s): 4291    Accepted Submission(s): 1502


    Problem Description
    Given 5 integers: a, b, c, d, k, you're to find x in a...b, y in c...d that GCD(x, y) = k. GCD(x, y) means the greatest common divisor of x and y. Since the number of choices may be very large, you're only required to output the total number of different number pairs.
    Please notice that, (x=5, y=7) and (x=7, y=5) are considered to be the same.

    Yoiu can assume that a = c = 1 in all test cases.
     
    Input
    The input consists of several test cases. The first line of the input is the number of the cases. There are no more than 3,000 cases.
    Each case contains five integers: a, b, c, d, k, 0 < a <= b <= 100,000, 0 < c <= d <= 100,000, 0 <= k <= 100,000, as described above.
     
    Output
    For each test case, print the number of choices. Use the format in the example.
     
    Sample Input
    2 1 3 1 5 1 1 11014 1 14409 9
     
    Sample Output
    Case 1: 9 Case 2: 736427
    Hint
    For the first sample input, all the 9 pairs of numbers are (1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (2, 3), (2, 5), (3, 4), (3, 5).
     
    Source
     
    Recommend
    wangye
     

    前几天用容斥原理写过这题:

    http://www.cnblogs.com/kuangbin/p/3269182.html

    速度比较慢。

    用莫比乌斯反演快很多。

    莫比乌斯反演资料:

    http://wenku.baidu.com/view/542961fdba0d4a7302763ad5.html

    http://baike.baidu.com/link?url=1qQ-hkgOwDJAH4xyRcEQVoOTmHbiRCyZZ-hEJxRBQO8G0OurXNr6Rh6pYj9fhySI0MY2RKpcaSPV9X75mQv0hK

    这题求[1,n],[1,m]gcd为k的对数。而且没有顺序。

    转化之后就是[1,n/k],[1,m/k]之间互质的数的个数。

    用莫比乌斯反演就很容易求了。

    为了去除重复的,去掉一部分就好了;

    这题求的时候还可以分段进行优化的。

    具体看我的下一篇博客吧!

     1 /* ***********************************************
     2 Author        :kuangbin
     3 Created Time  :2013/8/21 19:32:35
     4 File Name     :F:2013ACM练习专题学习数学莫比乌斯反演HDU1695GCD.cpp
     5 ************************************************ */
     6 
     7 #include <stdio.h>
     8 #include <string.h>
     9 #include <iostream>
    10 #include <algorithm>
    11 #include <vector>
    12 #include <queue>
    13 #include <set>
    14 #include <map>
    15 #include <string>
    16 #include <math.h>
    17 #include <stdlib.h>
    18 #include <time.h>
    19 using namespace std;
    20 const int MAXN = 1000000;
    21 bool check[MAXN+10];
    22 int prime[MAXN+10];
    23 int mu[MAXN+10];
    24 void Moblus()
    25 {
    26     memset(check,false,sizeof(check));
    27     mu[1] = 1;
    28     int tot = 0;
    29     for(int i = 2; i <= MAXN; i++)
    30     {
    31         if( !check[i] )
    32         {
    33             prime[tot++] = i;
    34             mu[i] = -1;
    35         }
    36         for(int j = 0; j < tot; j++)
    37         {
    38             if(i * prime[j] > MAXN) break;
    39             check[i * prime[j]] = true;
    40             if( i % prime[j] == 0)
    41             {
    42                 mu[i * prime[j]] = 0;
    43                 break;
    44             }
    45             else
    46             {
    47                 mu[i * prime[j]] = -mu[i];
    48             }
    49         }
    50     }
    51 }
    52 int main()
    53 {
    54     //freopen("in.txt","r",stdin);
    55     //freopen("out.txt","w",stdout);
    56     int T;
    57     int a,b,c,d,k;
    58     Moblus();
    59     scanf("%d",&T);
    60     int iCase = 0;
    61     while(T--)
    62     {
    63         iCase++;
    64         scanf("%d%d%d%d%d",&a,&b,&c,&d,&k);
    65         if(k == 0)
    66         {
    67             printf("Case %d: 0
    ",iCase);
    68             continue;
    69         }
    70         b /= k;
    71         d /= k;
    72         if(b > d)swap(b,d);
    73         long long ans1 = 0;
    74         for(int i = 1; i <= b;i++)
    75             ans1 += (long long)mu[i]*(b/i)*(d/i);
    76         long long ans2 = 0;
    77         for(int i = 1;i <= b;i++)
    78             ans2 += (long long)mu[i]*(b/i)*(b/i);
    79         ans1 -= ans2/2;
    80         printf("Case %d: %I64d
    ",iCase,ans1);
    81     }
    82     return 0;
    83 }
  • 相关阅读:
    转-关于图片或者文件在数据库的存储方式归纳
    转-数据流图的画法
    Effective Java2-学习笔记 第11-20条
    Effective Java2-学习笔记 第1-10条
    Python面向对象-学习笔记
    python基础语法-学习笔记
    C# 获取时间戳
    C# 时间格式转换
    C# 获取IP地址
    Http post请求
  • 原文地址:https://www.cnblogs.com/kuangbin/p/3273440.html
Copyright © 2011-2022 走看看