zoukankan      html  css  js  c++  java
  • HDU 4498 Function Curve (分段,算曲线积分)

    Function Curve

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65535/65535 K (Java/Others)
    Total Submission(s): 31    Accepted Submission(s): 10


    Problem Description
    Given sequences of k1, k2, … kn, a1, a2, …, an and b1, b2, …, bn. Consider following function: 

    Then we draw F(x) on a xy-plane, the value of x is in the range of [0,100]. Of course, we can get a curve from that plane. 
    Can you calculate the length of this curve?
     
    Input
    The first line of the input contains one integer T (1<=T<=15), representing the number of test cases. 
    Then T blocks follow, which describe different test cases. 
    The first line of a block contains an integer n ( 1 <= n <= 50 ). 
    Then followed by n lines, each line contains three integers ki, ai, bi ( 0<=ai, bi<100, 0<ki<100 ) .
     
    Output
    For each test case, output a real number L which is rounded to 2 digits after the decimal point, means the length of the curve.
     
    Sample Input
    2 3 1 2 3 4 5 6 7 8 9 1 4 5 6
     
    Sample Output
    215.56 278.91
    Hint
    All test cases are generated randomly.
     
    Source
     
    Recommend
    liuyiding
     

    写起来太多了,希望没有写错了。,基本和代码实现对应的

      1 /* ***********************************************
      2 Author        :kuangbin
      3 Created Time  :2013/8/24 13:45:56
      4 File Name     :F:2013ACM练习比赛练习2013通化邀请赛1006.cpp
      5 ************************************************ */
      6 
      7 #include <stdio.h>
      8 #include <string.h>
      9 #include <iostream>
     10 #include <algorithm>
     11 #include <vector>
     12 #include <queue>
     13 #include <set>
     14 #include <map>
     15 #include <string>
     16 #include <math.h>
     17 #include <stdlib.h>
     18 #include <time.h>
     19 using namespace std;
     20 double k[100],a[100],b[100];
     21 vector<double>p;
     22 const double eps = 1e-8;
     23 void add(double a1,double b1,double c1)
     24 {
     25     if(fabs(a1) < eps && fabs(b1) < eps)
     26         return;
     27     if(fabs(a1) < eps)
     28     {
     29         double x = -c1/b1;
     30         if(x >= 0 && x <= 100)
     31             p.push_back(x);
     32         return;
     33     }
     34     double tmp = b1*b1 - 4*a1*c1;
     35     if(fabs(tmp) < eps)
     36     {
     37         double x = -b1/(2*a1);
     38         if(x >= 0 && x <= 100)
     39             p.push_back(x);
     40         return;
     41     }
     42     else if(tmp <=-eps)
     43     {
     44         return;
     45     }
     46     double x1 = (-b1+sqrt(tmp))/(2*a1);
     47     double x2 = (-b1-sqrt(tmp))/(2*a1);
     48     if(x1 >= 0 && x1 <= 100)
     49         p.push_back(x1);
     50     if(x2 >= 0 && x2 <= 100)
     51         p.push_back(x2);
     52 }
     53 double calc(double x)
     54 {
     55     return x*sqrt(1+x*x)/2 + log(x+sqrt(1+x*x))/2;
     56 }
     57 int main()
     58 {
     59     //freopen("in.txt","r",stdin);
     60     //freopen("out.txt","w",stdout);
     61     int T;
     62     int n;
     63     scanf("%d",&T);
     64     while(T--)
     65     {
     66         scanf("%d",&n);
     67         for(int i = 0;i < n;i++)
     68             scanf("%lf%lf%lf",&k[i],&a[i],&b[i]);
     69         p.clear();
     70         for(int i = 0;i < n;i++)
     71             add(k[i],-2*k[i]*a[i],k[i]*a[i]*a[i]+b[i]-100);
     72         for(int i = 0;i < n;i++)
     73             for(int j = i+1;j < n;j++)
     74             {
     75                 add(k[i]-k[j],2*k[j]*a[j]-2*k[i]*a[i],k[i]*a[i]*a[i]+b[i]-k[j]*a[j]*a[j]-b[j]);
     76             }
     77         p.push_back(0);
     78         p.push_back(100);
     79         double ans = 0;
     80         sort(p.begin(),p.end());
     81         int sz = p.size();
     82         for(int i = 1;i < sz;i++)
     83         {
     84             if(p[i] - p[i-1] < eps)continue;
     85             double tmp = (p[i] + p[i-1])/2;
     86             int tt = 0;
     87             for(int j = 0;j < n;j++)
     88                 if( k[j]*(tmp-a[j])*(tmp-a[j])+b[j] <   k[tt]*(tmp-a[tt])*(tmp-a[tt])+b[tt])
     89                     tt = j;
     90             if(k[tt]*(tmp-a[tt])*(tmp-a[tt])+b[tt] > 100)
     91             {
     92                 ans += p[i] - p[i-1];
     93                 continue;
     94             }
     95             ans += (calc(2*k[tt]*(p[i]-a[tt]))-calc(2*k[tt]*(p[i-1]-a[tt])))/(2*k[tt]);
     96 
     97         }
     98         printf("%.2lf
    ",ans);
     99     }
    100     return 0;
    101 }
  • 相关阅读:
    [Chrome_OS]Crosh Shell终端 基础命令
    [HTML5_WebSockets]HTML 5 Web Sockets应用初探
    [HTML5_WebWorkers]利用HTML5的window.postMessage实现跨域通信
    [HTML5_资源]49个超炫的HTML 5示例
    [HTML5_资源]国外模版网站
    [HTML5_JS跨域]JavaScript跨域总结与解决办法
    [HTML5_资源]给网页设计师的30个HTML5学习资源
    [HTML5_WebWorkers]HTML5 web通信(跨文档通信/通道通信)简介
    [HTML5_JQueryMobile]20个很棒的 jQuery Mobile 教程
    LeetCode-513. Find Bottom Left Tree Value
  • 原文地址:https://www.cnblogs.com/kuangbin/p/3279620.html
Copyright © 2011-2022 走看看