zoukankan      html  css  js  c++  java
  • SPOJ PGCD 4491. Primes in GCD Table && BZOJ 2820 YY的GCD (莫比乌斯反演)

    4491. Primes in GCD Table

    Problem code: PGCD


    Johnny has created a table which encodes the results of some operation -- a function of two arguments. But instead of a boring multiplication table of the sort you learn by heart at prep-school, he has created a GCD (greatest common divisor) table! So he now has a table (of height a and width b), indexed from (1,1) to (a,b), and with the value of field (i,j) equal to gcd(i,j). He wants to know how many times he has used prime numbers when writing the table.

    Input

    First, t ≤ 10, the number of test cases. Each test case consists of two integers, 1 ≤ a,b < 107.

    Output

    For each test case write one number - the number of prime numbers Johnny wrote in that test case.

    Example

    Input:
    2
    10 10
    100 100
    Output:
    30
    2791

    题解参考:

    http://quartergeek.com/eight-gcd-problems/

    ans = sigma(p, sigma(d, μ(d) * (n/pd) * (m/pd)))
    
    Let s = pd, then
    
    ans = sigma(s, sigma(p, μ(s/p) * (n/s) * (m/s)))
        = sigma(s, (n/s) * (m/s) * sigma(p, μ(s/p)))
    
    Let g(x) = sigma(p, μ(x/p)), then
    
    ans = sigma(s, (n/s) * (m/s) * g(s))

    如果我们能预处理g(x)的话就能和前面一样分块搞了。这个时候我们多么希望g(x)μ(x)一样是积性函数。看完题解后,发现有一个不是积性函数,胜似积性函数的性质。由于题解没有给证明,所以就意淫了一个证明。

    考虑质数p'g(p'x) = sigma(p | p'x, μ(p'x/p))

    • x % p' == 0,那么考虑sigma中的变量p的所有取值,它和g(x)p是相同的。而μ(x)这个函数,如果x有平方因子的话就等于0,因此当p != p'μ(p'x/p) = 0,当p == p'是,μ(p'x/p) = μ(x)。所以g(p'x) = μ(x)
    • x % p' != 0,同样考虑p,会发现它的取值只比g(x)中的p多出一个p'。同理按照p是否等于p'讨论,可以得到g(p'x) = -g(x) + μ(x)

    因此g(x)可以在线性筛素数的时候算出。剩下的就是前缀和、分块了。

     1 /* ***********************************************
     2 Author        :kuangbin
     3 Created Time  :2013-10-19 22:01:05
     4 File Name     :E:2013ACM专题学习数学莫比乌斯反演SPOJ_PGCD.cpp
     5 ************************************************ */
     6 
     7 #include <stdio.h>
     8 #include <string.h>
     9 #include <iostream>
    10 #include <algorithm>
    11 #include <vector>
    12 #include <queue>
    13 #include <set>
    14 #include <map>
    15 #include <string>
    16 #include <math.h>
    17 #include <stdlib.h>
    18 #include <time.h>
    19 using namespace std;
    20 
    21 const int MAXN = 10000000;
    22 bool check[MAXN+10];
    23 int prime[MAXN+10];
    24 int mu[MAXN+10];
    25 int g[MAXN+10];
    26 int sum[MAXN+10];
    27 void Moblus()
    28 {
    29     memset(check,false,sizeof(check));
    30     mu[1] = 1;
    31     int tot = 0;
    32     for(int i = 2; i <= MAXN; i++)
    33     {
    34         if(!check[i])
    35         {
    36             prime[tot++] = i;
    37             mu[i] = -1;
    38             g[i] = 1;
    39         }
    40         for(int j = 0;j < tot;j++)
    41         {
    42             if(i * prime[j] > MAXN)break;
    43             check[i*prime[j]] = true;
    44             if(i % prime[j] == 0)
    45             {
    46                 mu[i * prime[j]] = 0;
    47                 g[i * prime[j]] = mu[i];
    48                 break;
    49             }
    50             else
    51             {
    52                 mu[i * prime[j]] = -mu[i];
    53                 g[i * prime[j]] = -g[i] + mu[i];
    54             }
    55         }
    56     }
    57     sum[0] = 0;
    58     for(int i = 1;i <= MAXN;i++)
    59         sum[i] = sum[i-1] + g[i];
    60 }
    61 int main()
    62 {
    63     //freopen("in.txt","r",stdin);
    64     //freopen("out.txt","w",stdout);
    65     Moblus();
    66     int T;
    67     int n,m;
    68     scanf("%d",&T);
    69     while(T--)
    70     {
    71         scanf("%d%d",&n,&m);
    72         if(n > m)swap(n,m);
    73         long long ans = 0;
    74         int last = 0;
    75         for(int i = 1;i <= n;i = last+1)
    76         {
    77             last = min(n/(n/i),m/(m/i));
    78             ans += (long long)(sum[last] - sum[i-1])*(n/i)*(m/i);
    79         }
    80         printf("%lld
    ",ans);
    81     }
    82     return 0;
    83 }

  • 相关阅读:
    如何通过网页远程控制linux --远程访问Linux桌面
    用Python快速实现HTTP和FTP服务器
    两台server间测速工具iperf3
    向Linux进程发送信号
    谓语必须为动词或动词短语~
    2021-6-2 支撑
    运用学过的设计原则和思想完善之前讲的性能计数器项目(下)
    运用学过的设计原则和思想完善之前讲的性能计数器项目(上)
    总结回顾面向对象、设计原则、编程规范、重构技巧等知识点
    实战二(下):重构ID生成器项目中各函数的异常处理代码
  • 原文地址:https://www.cnblogs.com/kuangbin/p/3378531.html
Copyright © 2011-2022 走看看