zoukankan      html  css  js  c++  java
  • HDU 4790 Just Random (2013成都J题)

    Just Random

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
    Total Submission(s): 87    Accepted Submission(s): 34


    Problem Description
      Coach Pang and Uncle Yang both love numbers. Every morning they play a game with number together. In each game the following will be done:
      1. Coach Pang randomly choose a integer x in [a, b] with equal probability.
      2. Uncle Yang randomly choose a integer y in [c, d] with equal probability.
      3. If (x + y) mod p = m, they will go out and have a nice day together.
      4. Otherwise, they will do homework that day.
      For given a, b, c, d, p and m, Coach Pang wants to know the probability that they will go out.
     
    Input
      The first line of the input contains an integer T denoting the number of test cases.
      For each test case, there is one line containing six integers a, b, c, d, p and m(0 <= a <= b <= 109, 0 <=c <= d <= 109, 0 <= m < p <= 109).
     
    Output
      For each test case output a single line "Case #x: y". x is the case number and y is a fraction with numerator and denominator separated by a slash ('/') as the probability that they will go out. The fraction should be presented in the simplest form (with the smallest denominator), but always with a denominator (even if it is the unit).
     
    Sample Input
    4 0 5 0 5 3 0 0 999999 0 999999 1000000 0 0 3 0 3 8 7 3 3 4 4 7 0
     
    Sample Output
    Case #1: 1/3 Case #2: 1/1000000 Case #3: 0/1 Case #4: 1/1
     
    Source
     

    这题就是要找在[a,b]  [c,d] 之间,和模p等于m的对数。

    把[a,b] [c,d]所有可能组合的和写成下列形式。

    a+c  a+c+1  a+c+2   ..................a+d

            a+c+1  a+c+2  a+c+3 ........a+d  a+d+1

                        a+c+2  a+c+3         a+d   a+d+1   a+d+2

                                    ....................

                                    ...................

                                    b+c   b+c+1   ...............................................b+d;

    上面大致形成一个斜的矩阵。

    使用b+c  和 a+d两条竖线,就可以分成三部分。前后两部分个数是等差数列,中间个数是相等的。

    只需要讨论下b+c 和 a+d的大小。  然后找到%p==m 的位置,求和就可以搞定了。

     1 /* ***********************************************
     2 Author        :kuangbin
     3 Created Time  :2013-11-16 13:20:40
     4 File Name     :E:2013ACM专题强化训练区域赛2013成都1010.cpp
     5 ************************************************ */
     6 
     7 #include <stdio.h>
     8 #include <string.h>
     9 #include <iostream>
    10 #include <algorithm>
    11 #include <vector>
    12 #include <queue>
    13 #include <set>
    14 #include <map>
    15 #include <string>
    16 #include <math.h>
    17 #include <stdlib.h>
    18 #include <time.h>
    19 using namespace std;
    20 
    21 long long gcd(long long a,long long b)
    22 {
    23     if(b == 0)return a;
    24     return gcd(b,a%b);
    25 }
    26 int main()
    27 {
    28     //freopen("in.txt","r",stdin);
    29     //freopen("out.txt","w",stdout);
    30     long long a,b,c,d,p,m;
    31     int T;
    32     int iCase = 0;
    33     scanf("%d",&T);
    34     while(T--)
    35     {
    36         iCase++;
    37         scanf("%I64d%I64d%I64d%I64d%I64d%I64d",&a,&b,&c,&d,&p,&m);
    38         long long ans = 0;
    39         if(b+c <= a+d)
    40         {
    41             long long t1 = (a+c)%p;
    42             long long add = (m - t1 + p)%p;
    43             long long cnt1 = (a+c + add-m)/p;
    44             //cout<<t1<<" "<<add<<endl;
    45             long long t2 = (b+c-1)%p;
    46             long long sub = (t2 - m + p)%p;
    47             long long cnt2 = (b+c-1-sub-m)/p;
    48             //cout<<t2<<" "<<sub<<endl;
    49             ans += (cnt2 - cnt1 + 1)*(1+add) + (cnt2 - cnt1 + 1)*(cnt2 - cnt1)/2 * p;
    50             //printf("%I64d %I64d  %I64d
    ",cnt1,cnt2,ans);
    51             t1 = (b+c)%p;
    52             add = (m - t1 + p)%p;
    53             cnt1 = (b+c+add-m)/p;
    54             t2 = (a+d)%p;
    55             sub = (t2 - m + p)%p;
    56             cnt2 = (a+d-sub-m)/p;
    57             ans += (cnt2 - cnt1 + 1)*(b-a+1);
    58             t1 = (a+d+1)%p;
    59             add = (m - t1 + p)%p;
    60             cnt1 = (a+d+1+add-m)/p;
    61             t2 = (b+d)%p;
    62             sub = (t2 - m + p)%p;
    63             cnt2 = (b+d-sub-m)/p;
    64             ans += (cnt2 - cnt1 + 1)*(1+sub) + (cnt2 - cnt1 + 1)*(cnt2 - cnt1)/2*p;
    65         }
    66         else
    67         {
    68             long long t1 = (a+c)%p;
    69             long long add = (m - t1 + p)%p;
    70             long long cnt1 = (a+c + add-m)/p;
    71             long long t2 = (a+d-1)%p;
    72             long long sub = (t2 - m + p)%p;
    73             long long cnt2 = (a+d-1-sub-m)/p;
    74             ans += (cnt2 - cnt1 + 1)*(1+add) + (cnt2 - cnt1 + 1)*(cnt2 - cnt1)/2 * p;
    75             t1 = (a+d)%p;
    76             add = (m - t1 + p)%p;
    77             cnt1 = (a+d+add-m)/p;
    78             t2 = (b+ c)%p;
    79             sub = (t2 - m + p)%p;
    80             cnt2 = (b+c-sub-m)/p;
    81             ans += (cnt2 - cnt1 + 1)*(d-c+1);
    82             t1 = (b+c+1)%p;
    83             add = (m - t1 + p)%p;
    84             cnt1 = (b+c+1+add-m)/p;
    85             t2 = (b+d)%p;
    86             sub = (t2 - m + p)%p;
    87             cnt2 = (b+d - sub-m)/p;
    88             ans += (cnt2 - cnt1 + 1)*(1+sub) + (cnt2 - cnt1 + 1)*(cnt2 - cnt1)/2*p;
    89         }
    90         long long tot = (b-a+1)*(d-c+1);
    91         long long GCD = gcd(ans,tot);
    92         ans /= GCD;
    93         tot /= GCD;
    94         printf("Case #%d: %I64d/%I64d
    ",iCase,ans,tot);
    95     }
    96     return 0;
    97 }
  • 相关阅读:
    Lightmaping
    Android内存回收机制
    基本光照模型简单实现
    Pass的通用指令开关
    使用Depth Texture
    使用替换shader渲染
    Windows下安装Oracle12C(一)
    SpringMVC文件上传基础
    Spring集成线程池
    《经久不衰的Spring框架:@ResponseBody 中文乱码》(转)
  • 原文地址:https://www.cnblogs.com/kuangbin/p/3429062.html
Copyright © 2011-2022 走看看