zoukankan      html  css  js  c++  java
  • Ultra-QuickSort【归并排序典型题目】

    Ultra-QuickSort
    Time Limit: 7000MS   Memory Limit: 65536K
    Total Submissions: 34470   Accepted: 12382

    题目链接:http://poj.org/problem?id=2299

    Description

    In this problem, you have to analyze a particular sorting algorithm. The algorithm processes a sequence of n distinct integers by swapping two adjacent sequence elements until the sequence is sorted in ascending order. For the input sequence 
    9 1 0 5 4 ,

    Ultra-QuickSort produces the output 
    0 1 4 5 9 .

    Your task is to determine how many swap operations Ultra-QuickSort needs to perform in order to sort a given input sequence.

    Input

    The input contains several test cases. Every test case begins with a line that contains a single integer n < 500,000 -- the length of the input sequence. Each of the the following n lines contains a single integer 0 ≤ a[i] ≤ 999,999,999, the i-th input sequence element. Input is terminated by a sequence of length n = 0. This sequence must not be processed.

    Output

    For every input sequence, your program prints a single line containing an integer number op, the minimum number of swap operations necessary to sort the given input sequence.

    Sample Input

    5
    9
    1
    0
    5
    4
    3
    1
    2
    3
    0
    

    Sample Output

    6
    0
    

    Source

     
    题目大意:给出一段数字序列,每次只能交换相邻的两个数,问最少需要多少次可以使得这段序列变成顺序序列。
    思路:用冒泡排序超时,因为给的数据量很大。用归并排序的方法可以求出逆序数,在这里,逆序数就是冒泡排序的交换次数,所以这道题目就是用归并排序的方法对数组进行排序,并得出逆序数,输出即可。
    代码:
     1 #include<iostream>
     2 #include<string.h>
     3 #include<cstdio>
     4 #include<cstdlib>
     5 #define max 1000000
     6 using namespace std;
     7 int n,f[max],g[max];
     8 long long int sum=0;
     9 void guibing(int l,int mid,int r)
    10 {
    11     int t=0;
    12     int i=l,j=mid+1;
    13     while(i<=mid&&j<=r)
    14     {
    15         if(f[i]<=f[j])
    16         {
    17             g[t++]=f[i];
    18             i++;
    19         }
    20         else
    21         {
    22                 g[t++]=f[j];
    23                 j++;
    24                 sum=sum+mid-i+1;
    25         }
    26     }
    27     while(i<=mid)g[t++]=f[i++];
    28     while(j<=r)g[t++]=f[j++];
    29     for(i=0;i<t;i++)
    30     f[l+i]=g[i];
    31 }
    32 void quicksort(int l,int r)
    33 {
    34     if(l<r)
    35     {
    36         int mid=(l+r)/2;
    37         quicksort(l,mid);
    38         quicksort(mid+1,r);
    39         guibing(l,mid,r);
    40     }
    41 }
    42 int main()
    43 {
    44     while(1)
    45     {
    46         cin>>n;
    47         if(n==0)break;
    48         int i;
    49         sum=0;
    50         for(i=0;i<=n-1;i++)
    51         cin>>f[i];
    52         quicksort(0,n-1);
    53         cout<<sum<<endl;
    54     }
    55     return 0;
    56 }
    View Code
  • 相关阅读:
    一、【注解】Spring注解@ComponentScan
    一致性Hash算法
    垃圾回收器搭配和调优
    JVM的逃逸分析
    简单理解垃圾回收
    类加载机制和双亲委派模型
    VMWare15下安装CentOS7
    HBase协处理器(1)
    依赖注入的三种方式
    Javascript-设计模式_装饰者模式
  • 原文地址:https://www.cnblogs.com/kuangdaoyizhimei/p/3268325.html
Copyright © 2011-2022 走看看