POJ 2112 最大流 最短路
题意:给定K个挤奶器和C头奶牛,每个挤奶器每天最多挤m头奶牛;挤奶器和奶牛称为“实物”,再给每个实物之间的距离。问挤完所有奶牛,奶牛所需走最短的距离。
分析:用Floyd求出“实物”之间的最短距离,求最大流,二分找最短距离。
#include <queue>
#include <cstring>
#include <cstdio>
using namespace std;
const int N = 250;
int K, C, n, m, cnt, st, ed;
struct node{
int v, w, nxt;
}edge[N * N];
int e[N][N], fir[N], deep[N];
inline void add(int u, int v, int w){
edge[++cnt] = (node){v, w, fir[u]}; fir[u] = cnt;
edge[++cnt] = (node){u, 0, fir[v]}; fir[v] = cnt;
}
inline int bfs(){
memset(deep, 0, sizeof(deep));
deep[st] = 1;
queue<int> q;
q.push(st);
while(!q.empty()){
int u = q.front();
q.pop();
for(int i = fir[u]; i; i = edge[i].nxt){
int v = edge[i].v;
if(edge[i].w && !deep[v]){
deep[v] = deep[u] + 1;
q.push(v);
}
}
}
return deep[ed];
}
inline int dfs(int u, int fl){
if(u == ed || fl == 0) return fl;
int f = 0;
for(int i = fir[u]; i; i = edge[i].nxt){
int v = edge[i].v;
if(edge[i].w && deep[u] + 1 == deep[v]){
int x = dfs(v, min(fl, edge[i].w));
edge[i].w -= x;
edge[i^1].w += x;
fl -= x;
f += x;
}
}
if(!f) deep[u] = -2;
return f;
}
inline int Dinic(){
int ans = 0, d;
while(bfs()){
while((d = dfs(st, 0x3f3f3f3f))){
ans += d;
}
}
return ans;
}
inline void Floyd(){
for(int k = 1; k <= n; k++){
for(int i = 1; i <= n; i++){
for(int j = 1; j <= n; j++){
if(e[i][j] > e[k][i] + e[j][k]){
e[i][j] = e[k][i] + e[j][k];
}
}
}
}
}
inline void built(int mid){
cnt = 1;
memset(fir, 0, sizeof(fir));
for(int i = K + 1; i <= n; i++) add(st, i, 1);//源点到每个奶牛
for(int i = 1; i <= K; i++) add(i, ed, m);//挤奶器到汇点
for(int i = 1; i <= K; i++){
for(int j = K + 1; j <= n; j++){
if(e[i][j] <= mid) add(j, i, 1);//奶牛到挤奶器的距离小于mid,就加一条容量为1的边。
}
}
}
int main(){
#ifdef ONLINE_JUDGE
#else
freopen("in.txt", "r", stdin);
#endif //ONLINE_JUDGE
while(~scanf("%d%d%d", &K, &C, &m)){
n = K + C;
for(int i = 1; i <= n; i++){
for(int j = 1; j <= n; j++){
scanf("%d", &e[i][j]);
if(i != j && !e[i][j]) e[i][j] = 0x3f3f3f3f;
}
}
Floyd();
int l = 0, r = 0x3f3f3f3f;
st = 0, ed = n + 1;
while(l <= r){
int mid = (l + r) / 2;
built(mid);
int ans = Dinic();
if(ans == C) r = mid - 1;//如果满足就缩小上限
else l = mid + 1;
}
printf("%d
", r + 1);
}
return 0;
}