Problem A: Fractions Again?! |
Time limit: 1 second |
It is easy to see that for every fraction in the form (k > 0), we can always find two positive integers x and y, x ≥ y,
such that:
.
Now our question is: can you write a program that counts how many such pairs of x and y there are for any given k?
Input
Input contains no more than 100 lines, each giving a value of k (0 < k ≤ 10000).
Output
For each k, output the number of corresponding (x, y) pairs, followed by a sorted list of the values of x and y, as shown in the sample output.
Sample Input
2 12
Sample Output
2 1/2 = 1/6 + 1/3 1/2 = 1/4 + 1/4 8 1/12 = 1/156 + 1/13 1/12 = 1/84 + 1/14 1/12 = 1/60 + 1/15 1/12 = 1/48 + 1/16 1/12 = 1/36 + 1/18 1/12 = 1/30 + 1/20 1/12 = 1/28 + 1/21 1/12 = 1/24 + 1/24
注意找k,x,y之间的规律和范围,不能盲目暴力啊
#include <bits/stdc++.h> using namespace std; int main() { int k; while(scanf("%d", &k)!=EOF) { int x, y, cnt = 0; vector<int> res1, res2; for(y = k+1; y <= 2*k; y++) { x = (k*y)/(y-k); if(k*y == (y-k)*x){ cnt++; res1.push_back(x); res2.push_back(y); } } printf("%d ", cnt); for(int i = 0; i < cnt; i++) printf("1/%d = 1/%d + 1/%d ", k, res1[i], res2[i]); } return 0; }