zoukankan      html  css  js  c++  java
  • 03-树3 Tree Traversals Again

    二叉树及其遍历 

    push为前序遍历序列,pop为中序遍历序列。将题目转化为已知前序、中序,求后序。

    前序GLR 中序LGR

    前序第一个为G,在中序中找到G,左边为左子树L,右边为右子树R。

    将左右子树看成新的树,同理。

    An inorder binary tree traversal can be implemented in a non-recursive way with a stack. For example, suppose that when a 6-node binary tree (with the keys numbered from 1 to 6) is traversed, the stack operations are: push(1); push(2); push(3); pop(); pop(); push(4); pop(); pop(); push(5); push(6); pop(); pop(). Then a unique binary tree (shown in Figure 1) can be generated from this sequence of operations. Your task is to give the postorder traversal sequence of this tree.


    Figure 1

    Input Specification:

    Each input file contains one test case. For each case, the first line contains a positive integer N(30) which is the total number of nodes in a tree (and hence the nodes are numbered from 1 to N). Then 2N lines follow, each describes a stack operation in the format: "Push X" where X is the index of the node being pushed onto the stack; or "Pop" meaning to pop one node from the stack.

    Output Specification:

    For each test case, print the postorder traversal sequence of the corresponding tree in one line. A solution is guaranteed to exist. All the numbers must be separated by exactly one space, and there must be no extra space at the end of the line.

    Sample Input:

    6
    Push 1
    Push 2
    Push 3
    Pop
    Pop
    Push 4
    Pop
    Pop
    Push 5
    Push 6
    Pop
    Pop
    

    Sample Output:

    3 4 2 6 5 1

     1 #include <iostream>
     2 #include <cstdio>
     3 #include <stack>
     4 #include <string>
     5 using namespace std;
     6 
     7 #define MaxSize 30 
     8 
     9 #define OK 1
    10 #define ERROR 0
    11 
    12 int preOrder[MaxSize];
    13 int inOrder[MaxSize];
    14 int postOrder[MaxSize];
    15 
    16 void postorderTraversal(int preNo, int inNo, int postNo, int N);
    17 
    18 int main()
    19 {
    20     stack<int> stack;
    21     int N;        //树的结点数 
    22     cin >> N;
    23     string str;
    24     int data;
    25     int preNo = 0, inNo = 0, postNo = 0; 
    26     for(int i = 0; i < N * 2; i++) {        //push + pop = N*2 
    27         cin >> str;
    28         if(str == "Push") {            //push为前序序列 
    29             cin >> data;
    30             preOrder[preNo++] = data;
    31             stack.push(data);
    32         }else{                        //pop出的是中序序列 
    33             inOrder[inNo++] = stack.top();
    34             stack.pop();            //pop() 移除栈顶元素(不会返回栈顶元素的值) 
    35         }
    36     }
    37     postorderTraversal(0, 0, 0, N);
    38     for(int i = 0; i < N; i++) {        //输出后序遍历序列  
    39         if(i == 0)                        //控制输出格式 
    40             printf("%d",postOrder[i]);
    41         else
    42             printf(" %d",postOrder[i]);
    43     }
    44     printf("
    ");
    45     return 0;
    46 }
    47 
    48 void postorderTraversal(int preNo, int inNo, int postNo, int N) 
    49 {
    50     if(N == 0)
    51         return;
    52     if(N == 1) {
    53         postOrder[postNo] = preOrder[preNo];
    54          return;
    55     }
    56     int L, R; 
    57     int root = preOrder[preNo];            //先序遍历GLR第一个为根 
    58     postOrder[postNo + N -1] = root;     //后序遍历LRG最后一个为根
    59     for(int i = 0; i < N; i++) {
    60         if(inOrder[inNo + i] == root) {    //找到中序的根 左边为左子树 右边为右子树 
    61             L = i;                        //左子树的结点数 
    62             break;
    63         }
    64     } 
    65     R = N - L - 1;                        //右子树的结点数 
    66     postorderTraversal(preNo + 1, inNo, postNo, L);    //同理,将左子树看成新的树 
    67     postorderTraversal(preNo + L + 1, inNo + L + 1, postNo + L, R);//同理,右子树 
    68 } 
     
  • 相关阅读:
    js数据类型转换
    html5的onhashchange和history历史管理
    Javascript语言精粹-毒瘤和糟粕
    [夏天Object]运行时程序执行的上下文堆栈(一)
    [Object]继承(经典版)(五)封装
    [Object]继承(经典版)(四)多重继承和组合继承
    flex 弹性布局的大坑!!
    带视觉差的轮播图
    不用循环的数组求和
    CSS3盒模型display:box简述
  • 原文地址:https://www.cnblogs.com/kuotian/p/5296968.html
Copyright © 2011-2022 走看看