二叉树及其遍历
push为前序遍历序列,pop为中序遍历序列。将题目转化为已知前序、中序,求后序。
前序GLR 中序LGR
前序第一个为G,在中序中找到G,左边为左子树L,右边为右子树R。
将左右子树看成新的树,同理。
An inorder binary tree traversal can be implemented in a non-recursive way with a stack. For example, suppose that when a 6-node binary tree (with the keys numbered from 1 to 6) is traversed, the stack operations are: push(1); push(2); push(3); pop(); pop(); push(4); pop(); pop(); push(5); push(6); pop(); pop(). Then a unique binary tree (shown in Figure 1) can be generated from this sequence of operations. Your task is to give the postorder traversal sequence of this tree.
Figure 1
Input Specification:
Each input file contains one test case. For each case, the first line contains a positive integer N(≤30) which is the total number of nodes in a tree (and hence the nodes are numbered from 1 to N). Then 2N lines follow, each describes a stack operation in the format: "Push X" where X is the index of the node being pushed onto the stack; or "Pop" meaning to pop one node from the stack.
Output Specification:
For each test case, print the postorder traversal sequence of the corresponding tree in one line. A solution is guaranteed to exist. All the numbers must be separated by exactly one space, and there must be no extra space at the end of the line.
Sample Input:
6
Push 1
Push 2
Push 3
Pop
Pop
Push 4
Pop
Pop
Push 5
Push 6
Pop
Pop
Sample Output:
3 4 2 6 5 1
1 #include <iostream> 2 #include <cstdio> 3 #include <stack> 4 #include <string> 5 using namespace std; 6 7 #define MaxSize 30 8 9 #define OK 1 10 #define ERROR 0 11 12 int preOrder[MaxSize]; 13 int inOrder[MaxSize]; 14 int postOrder[MaxSize]; 15 16 void postorderTraversal(int preNo, int inNo, int postNo, int N); 17 18 int main() 19 { 20 stack<int> stack; 21 int N; //树的结点数 22 cin >> N; 23 string str; 24 int data; 25 int preNo = 0, inNo = 0, postNo = 0; 26 for(int i = 0; i < N * 2; i++) { //push + pop = N*2 27 cin >> str; 28 if(str == "Push") { //push为前序序列 29 cin >> data; 30 preOrder[preNo++] = data; 31 stack.push(data); 32 }else{ //pop出的是中序序列 33 inOrder[inNo++] = stack.top(); 34 stack.pop(); //pop() 移除栈顶元素(不会返回栈顶元素的值) 35 } 36 } 37 postorderTraversal(0, 0, 0, N); 38 for(int i = 0; i < N; i++) { //输出后序遍历序列 39 if(i == 0) //控制输出格式 40 printf("%d",postOrder[i]); 41 else 42 printf(" %d",postOrder[i]); 43 } 44 printf(" "); 45 return 0; 46 } 47 48 void postorderTraversal(int preNo, int inNo, int postNo, int N) 49 { 50 if(N == 0) 51 return; 52 if(N == 1) { 53 postOrder[postNo] = preOrder[preNo]; 54 return; 55 } 56 int L, R; 57 int root = preOrder[preNo]; //先序遍历GLR第一个为根 58 postOrder[postNo + N -1] = root; //后序遍历LRG最后一个为根 59 for(int i = 0; i < N; i++) { 60 if(inOrder[inNo + i] == root) { //找到中序的根 左边为左子树 右边为右子树 61 L = i; //左子树的结点数 62 break; 63 } 64 } 65 R = N - L - 1; //右子树的结点数 66 postorderTraversal(preNo + 1, inNo, postNo, L); //同理,将左子树看成新的树 67 postorderTraversal(preNo + L + 1, inNo + L + 1, postNo + L, R);//同理,右子树 68 }