Description
How far can you make a stack of cards overhang a table? If you have one card, you can create a maximum overhang of half a card length. (We're assuming that the cards must be perpendicular to the table.) With two cards you can make the top card overhang the bottom one by half a card length, and the bottom one overhang the table by a third of a card length, for a total maximum overhang of 1/2 + 1/3 = 5/6 card lengths. In general you can make n cards overhang by 1/2 + 1/3 + 1/4 + ... + 1/(n + 1) card lengths, where the top card overhangs the second by 1/2, the second overhangs tha third by 1/3, the third overhangs the fourth by 1/4, etc., and the bottom card overhangs the table by 1/(n + 1). This is illustrated in the figure below.
Input
Output
Sample Input
1.00 3.71 0.04 5.19 0.00
Sample Output
3 card(s) 61 card(s) 1 card(s) 273 card(s)
Time Limit: 1000MS | Memory Limit: 10000K | |
Total Submissions: 134994 | Accepted: 65614 |
题目大意:若将一叠卡片放在一张桌子的边缘,你能放多远?如果你有一张卡片,你最远能达到卡片长度的一半。(我们假定卡片都正放在桌 子上。)如果你有两张卡片,你能使最上的一张卡片覆盖下面那张的1/2,底下的那张可以伸出桌面1/3的长度,即最远能达到 1/2 + 1/3 = 5/6 的卡片长度。一般地,如果你有n张卡片,你可以伸出 1/2 + 1/3 + 1/4 + ... + 1/(n + 1) 的卡片长度,也就是最上的一张卡片覆盖第二张1/2,第二张超出第三张1/3,第三张超出第四张1/4,依此类推,最底的一张卡片超出桌面1/(n + 1)。
现在给定伸出长度C(0.01至5.20之间),输出至少需要多少张卡片。
二分+离线
#include<bits/stdc++.h>
using namespace std;
const double delta= 1e-8;//设置精度
double len[1001];
int zero(double x)
{
if(x>delta)
return 1;
else if(x<-delta)
return -1;
else
return 0;
}
int tol=1;
void work()//离线打表
{
len[0]=0.0;
for(;zero(len[tol-1]-5.20)<0;tol++)
{
len[tol]=len[tol-1]+1.0/(double)(tol+1);
}
}
int main(int argc, char const *argv[])
{
//freopen("data.txt","r",stdin);
double c;
work();
while(scanf("%lf",&c)!=EOF)
{
if(0.00==c)break;
int l=0;
int r=tol-1;
int mid;
while(l<r)
{
mid=(l+r)/2;
if(zero(len[mid]-c)<0)
l=mid+1;//因为是至少所以小于的时候左边界要加一
else
r=mid;//大于等于的时候直接r等于mid
}
printf("%d card(s)
",r);
}
return 0;
}