zoukankan      html  css  js  c++  java
  • Codeforces Round #547 D. Colored Boots(贪心)

    There are n left boots and n right boots. Each boot has a color which is denoted as a lowercase Latin letter or a question mark (’?’). Thus, you are given two strings l and r, both of length n. The character li stands for the color of the i-th left boot and the character ri stands for the color of the i-th right boot.

    A lowercase Latin letter denotes a specific color, but the question mark (’?’) denotes an indefinite color. Two specific colors are compatible if they are exactly the same. An indefinite color is compatible with any (specific or indefinite) color.

    For example, the following pairs of colors are compatible: (‘f’, ‘f’), (’?’, ‘z’), (‘a’, ‘?’) and (’?’, ‘?’). The following pairs of colors are not compatible: (‘f’, ‘g’) and (‘a’, ‘z’).

    Compute the maximum number of pairs of boots such that there is one left and one right boot in a pair and their colors are compatible.

    Print the maximum number of such pairs and the pairs themselves. A boot can be part of at most one pair.

    Input
    The first line contains n (1≤n≤150000), denoting the number of boots for each leg (i.e. the number of left boots and the number of right boots).

    The second line contains the string l of length n. It contains only lowercase Latin letters or question marks. The i-th character stands for the color of the i-th left boot.

    The third line contains the string r of length n. It contains only lowercase Latin letters or question marks. The i-th character stands for the color of the i-th right boot.

    Output
    Print k — the maximum number of compatible left-right pairs of boots, i.e. pairs consisting of one left and one right boot which have compatible colors.

    The following k lines should contain pairs aj,bj (1≤aj,bj≤n). The j-th of these lines should contain the index aj of the left boot in the j-th pair and index bj of the right boot in the j-th pair. All the numbers aj should be distinct (unique), all the numbers bj should be distinct (unique).

    If there are many optimal answers, print any of them.

    Examples
    input
    10
    codeforces
    dodivthree
    output
    5
    7 8
    4 9
    2 2
    9 10
    3 1
    input
    7
    abaca?b
    zabbbcc
    output
    5
    6 5
    2 3
    4 6
    7 4
    1 2
    input
    9
    bambarbia
    hellocode
    output
    0
    input
    10
    code???
    ???test
    output
    10
    6 2
    1 6
    7 3
    3 5
    4 8
    9 7
    5 1
    2 4
    10 9
    8 10

    题意: 给两个字符串a和b,每个字符表示一个靴子的颜色,两个相同的字母被认为是一对合法的靴子,如[f,f],[a,a],问号字符表示未知颜色的靴子,问号可以和任何颜色的靴子合法配对,问号也能和问号配对如,【a,?】【?,b】【?,?】,问两个字符串最大能匹配多少对靴子,输出每对靴子的下标。

    模拟就好了,用26个容器存储所有靴子的下标,然后直接遍历a和b串中是否存在某个字母,存在就塞入ans容器中。

    注意最后对比一下问号容器中是否存在能和不成对颜色组成一对的情况。

    代码如下:

    #include<bits/stdc++.h>
    #define LL long long
    #define pb(x) push_back(x)
    using namespace std;
    const int maxn=150007;
    int n;
    char a[maxn],b[maxn];
    stack<int>a1[30],b1[30];
    vector<pair<int,int> >ans;
    int main()
    {
        scanf("%d",&n);
        scanf("%s",a);
        scanf("%s",b);
        for(int i=0;i<n;i++)
        {
            if(a[i]=='?')a1[27].push(i+1);
            if(b[i]=='?')b1[27].push(i+1);
            if(a[i]>='a'&&a[i]<='z')a1[a[i]-'a'].push(i+1);
            if(b[i]>='a'&&b[i]<='z')b1[b[i]-'a'].push(i+1);
        }
        for(int i=0;i<26;i++)
        {
            while(!a1[i].empty()&&!b1[i].empty())
            {
                ans.pb(make_pair(a1[i].top(),b1[i].top()));
                a1[i].pop();
                b1[i].pop();
            }
            while(!a1[i].empty()&&!b1[27].empty())
            {
                ans.pb(make_pair(a1[i].top(),b1[27].top()));
                a1[i].pop();
                b1[27].pop();
            }
            while(!b1[i].empty()&&!a1[27].empty())
            {
                ans.pb(make_pair(a1[27].top(),b1[i].top()));
                a1[27].pop();
                b1[i].pop();
            }
        }
        while(!a1[27].empty()&&!b1[27].empty())
        {
            ans.pb(make_pair(a1[27].top(),b1[27].top()));
            a1[27].pop();
            b1[27].pop();
        }
        printf("%d
    ",ans.size());
        while(ans.size())printf("%d %d
    ",ans.back().first,ans.back().second),ans.pop_back();
    }
    
    
  • 相关阅读:
    ●单例模式
    ●扩展方法
    ●存储过程比sql语句慢
    ●rownum() over()
    ●日期格式化
    ●sql优化
    VS建立Web网站 20141201
    ORM操作(一) 20141128
    流的操作20141104
    控件:菜单、工具栏、状态栏及TreeView的操作 20141103
  • 原文地址:https://www.cnblogs.com/kuronekonano/p/11135661.html
Copyright © 2011-2022 走看看