zoukankan      html  css  js  c++  java
  • 《DSP using MATLAB》Problem 7.15

        用Kaiser窗方法设计一个台阶状滤波器。

    代码:

    %% ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
    %%            Output Info about this m-file
    fprintf('
    ***********************************************************
    ');
    fprintf('        <DSP using MATLAB> Problem 7.15 
    
    ');
    
    banner();
    %% ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
    
    % staircase bandpass 3-Band
    w1 = 0;      w2 = 0.3*pi; delta1 = 0.01;
    w3 = 0.4*pi; w4 = 0.7*pi; delta2 = 0.005;
    w5 = 0.8*pi; w6 = pi;     delta3 = 0.001;
    
    tr_width = min(w3-w2, w5-w3);
    
    f = [0  w2  w3   w4   w5  w6]/pi;
    m = [1  1   0.5  0.5  0   0];
    
    [Rp1, As1] = delta2db(delta1, delta3);
    [Rp2, As2] = delta2db(delta2, delta3);
    As = min(As1, As2)
    
    M = ceil((As-7.95)/(2.285*tr_width)) + 1;         % Kaiser Window Length
    
    if As > 21 || As < 50 
    	beta = 0.5842*(As-21)^0.4 + 0.07886*(As-21);
    else
    	beta = 0.1102*(As-8.7);
    end
    
    
    fprintf('
    Kaiser Window method, Filter Length: M = %d. beta = %.4f
    ', M, beta);
    
    
    n = [0:1:M-1]; wc1 = (w2+w3)/2; wc2 = (w4+w5)/2;
    
    %wc = (ws + wp)/2,                    % ideal LPF cutoff frequency
    
    hd = ideal_lp(wc1, M) + 0.5*(ideal_lp(wc2, M) - ideal_lp(wc1, M)); 
    w_kai = (kaiser(M, beta))';  h = hd .* w_kai;
    [db, mag, pha, grd, w] = freqz_m(h, [1]);  delta_w = 2*pi/1000;
    [Hr,ww,P,L] = ampl_res(h);
    
    Rp1 = -(min(db(1 :1: w2/delta_w+1)));                        % Actual Passband Ripple
    fprintf('
    Actual Passband Ripple1 is %.4f dB.
    ', Rp1);
    
    Rp2 = -(min(db(w3/delta_w+1 :1: w4/delta_w+1)));                        % Actual Passband Ripple
    fprintf('
    Actual Passband Ripple2 is %.4f dB.
    ', Rp2);
    
    As = -round(max(db(floor(w5/delta_w)+1 : 1 : floor(w6/delta_w)+1 )));   % Min Stopband attenuation
    fprintf('
    Min Stopband attenuation is %.4f dB.
    ', As);
    
    [delta1, delta3] = db2delta(Rp1, As)
    [delta2, delta3] = db2delta(Rp2, As)
    
    % Plot
    
    figure('NumberTitle', 'off', 'Name', 'Problem 7.15 ideal_lp Method')
    set(gcf,'Color','white'); 
    
    subplot(2,2,1); stem(n, hd); axis([0 M-1 -0.3 0.5]); grid on;
    xlabel('n'); ylabel('hd(n)'); title('Ideal Impulse Response');
    
    subplot(2,2,2); stem(n, w_kai); axis([0 M-1 0 1.1]); grid on;
    xlabel('n'); ylabel('w(n)'); title('Kaiser Window');
    
    subplot(2,2,3); stem(n, h); axis([0 M-1 -0.3 0.5]); grid on;
    xlabel('n'); ylabel('h(n)'); title('Actual Impulse Response');
    
    subplot(2,2,4); plot(w/pi, db); axis([0 1 -120 10]); grid on;
    set(gca,'YTickMode','manual','YTick',[-90,-65,-6,0]);
    set(gca,'YTickLabelMode','manual','YTickLabel',['90';'65';' 6';' 0']);
    set(gca,'XTickMode','manual','XTick',[f]);
    xlabel('frequency in pi units'); ylabel('Decibels'); title('Magnitude Response in dB');
    
    
    figure('NumberTitle', 'off', 'Name', 'Problem 7.15 h(n) ideal_lp Method')
    set(gcf,'Color','white'); 
    
    subplot(2,2,1); plot(w/pi, db); grid on; axis([0 2 -120 10]); 
    xlabel('frequency in pi units'); ylabel('Decibels'); title('Magnitude Response in dB');
    set(gca,'YTickMode','manual','YTick',[-90,-65,-6,0])
    set(gca,'YTickLabelMode','manual','YTickLabel',['90';'65';' 6';' 0']);
    set(gca,'XTickMode','manual','XTick',[f,1+f(2:6)]);
    
    subplot(2,2,3); plot(w/pi, mag); grid on; %axis([0 2 -100 10]); 
    xlabel('frequency in pi units'); ylabel('Absolute'); title('Magnitude Response in absolute');
    set(gca,'XTickMode','manual','XTick',[f,1+f(2:6)]);
    set(gca,'YTickMode','manual','YTick',[0,0.5, 1])
    
    subplot(2,2,2); plot(w/pi, pha); grid on; %axis([0 1 -100 10]); 
    xlabel('frequency in pi units'); ylabel('Rad'); title('Phase Response in Radians');
    subplot(2,2,4); plot(w/pi, grd*pi/180);  grid on; %axis([0 1 -100 10]); 
    xlabel('frequency in pi units'); ylabel('Rad'); title('Group Delay');
    
    figure('NumberTitle', 'off', 'Name', 'Problem 7.15 Amp Res of h(n)')
    set(gcf,'Color','white'); 
    
    plot(ww/pi, Hr); grid on; %axis([0 1 -100 10]); 
    xlabel('frequency in pi units'); ylabel('Hr'); title('Amplitude Response');
    set(gca,'YTickMode','manual','YTick',[-delta3,0,delta3,0.5-0.005, 0.5+0.005,1-delta1,1,1+delta1])
    %set(gca,'YTickLabelMode','manual','YTickLabel',['90';'45';' 0']);
    set(gca,'XTickMode','manual','XTick',[f,2]);
    
    
    
    %% +++++++++++++++++++++++++++++++++++++++++++++++++
    %%                 fir2 function method
    %% +++++++++++++++++++++++++++++++++++++++++++++++++
    f = [w1, w2, w3, w4, w5, w6]/pi;
    m = [1   1  0.5  0.5  0  0];
    ripple = [0.01 0.005 0.001];
    
    fprintf('
    --------- use fir2 function ---------
    ');
    
    h_check = fir2(M-1, f, m, kaiser(M, beta));
    
    [db, mag, pha, grd, w] = freqz_m(h_check, [1]);  
    %[Hr,ww,P,L] = ampl_res(h_check);
    [Hr,ww,P,L] = Hr_Type2(h_check);
    
    
    %% -------------------------------------------
    %%              plot
    %% -------------------------------------------
    figure('NumberTitle', 'off', 'Name', 'Problem 7.15 fir2 Method')
    set(gcf,'Color','white'); 
    
    subplot(2,2,1); stem(n, hd); axis([0 M-1 -0.3 0.5]); grid on;
    xlabel('n'); ylabel('hd(n)'); title('Ideal Impulse Response');
    
    subplot(2,2,2); stem(n, w_kai); axis([0 M-1 0 1.1]); grid on;
    xlabel('n'); ylabel('w(n)'); title('Kaiser Window');
    
    subplot(2,2,3); stem([0:M-1], h_check); axis([0 M -0.3 0.5]); grid on;
    set(gca,'XTickMode','manual','XTick',[0 M/2 M]);
    xlabel('n'); ylabel('h\_check(n)'); title('Actual Impulse Response');
    
    subplot(2,2,4); plot(w/pi, db); axis([0 1 -120 10]); grid on;
    set(gca,'YTickMode','manual','YTick',[-90,-65,-6,0]);
    set(gca,'YTickLabelMode','manual','YTickLabel',['90';'65';' 6';' 0']);
    set(gca,'XTickMode','manual','XTick',[f]);
    xlabel('frequency in pi units'); ylabel('Decibels'); title('Magnitude Response in dB');
    
    
    figure('NumberTitle', 'off', 'Name', 'Problem 7.15 h_check(n) fir2 Method')
    set(gcf,'Color','white'); 
    
    subplot(2,2,1); plot(w/pi, db); grid on; axis([0 2 -120 10]); 
    xlabel('frequency in pi units'); ylabel('Decibels'); title('Magnitude Response in dB');
    set(gca,'YTickMode','manual','YTick',[-90,-65,-6,0])
    set(gca,'YTickLabelMode','manual','YTickLabel',['90';'65';' 6';' 0']);
    set(gca,'XTickMode','manual','XTick',[f,1+f(2:6)]);
    
    subplot(2,2,3); plot(w/pi, mag); grid on; %axis([0 2 -100 10]); 
    xlabel('frequency in pi units'); ylabel('Absolute'); title('Magnitude Response in absolute');
    set(gca,'XTickMode','manual','XTick',[f,1+f(2:6)]);
    set(gca,'YTickMode','manual','YTick',[0,0.5, 1])
    
    subplot(2,2,2); plot(w/pi, pha); grid on; %axis([0 1 -100 10]); 
    xlabel('frequency in pi units'); ylabel('Rad'); title('Phase Response in Radians');
    subplot(2,2,4); plot(w/pi, grd*pi/180);  grid on; %axis([0 1 -100 10]); 
    xlabel('frequency in pi units'); ylabel('Rad'); title('Group Delay');
    

      运行结果:

            Kaiser窗长M=74,两个通带衰减分别为0.0079dB和6.0345dB,阻带最小衰减65dB>60dB,满足设计要求。

             用理想低通滤波方法设计的结果,实际脉冲响应、幅度谱(dB单位)

            幅度谱(dB和绝对单位)、相位谱和群延迟响应

            振幅响应(台阶状)

            第一个台阶(通带)

          第二个台阶(通带)

            阻带

            题目中暗示可以用fir1函数,但查了帮助和网上资料还是不会,只好用fir2函数的方法来设计,结果如下:

                群延迟不是严格的常数了,非线性相位滤波器。

    牢记: 1、如果你决定做某事,那就动手去做;不要受任何人、任何事的干扰。2、这个世界并不完美,但依然值得我们去为之奋斗。
  • 相关阅读:
    Silverlight学习(五)图形标绘
    Silverlight学习(四) domainservice动态多条件查询
    MySQL之单表查询
    mysql外键的三种关系
    mysql之完整性约束
    接口类和抽象类的区别
    mysql中的sql_mode
    html5本地存储技术 localstorage
    mysql数值类型
    mysql
  • 原文地址:https://www.cnblogs.com/ky027wh-sx/p/10545704.html
Copyright © 2011-2022 走看看