zoukankan      html  css  js  c++  java
  • 《DSP using MATLAB》Problem 8.28

    代码:

    %% ------------------------------------------------------------------------
    %%            Output Info about this m-file
    fprintf('
    ***********************************************************
    ');
    fprintf('        <DSP using MATLAB> Problem 8.28 
    
    ');
    
    banner();
    %% ------------------------------------------------------------------------
    
    Fp =  500;                    % analog passband freq in Hz
    Fs =  700;                    % analog stopband freq in Hz
    fs = 2000;                    % sampling rate in Hz
    
    % -------------------------------
    %       ω = ΩT = 2πF/fs
    % Digital Filter Specifications:
    % -------------------------------
    wp = 2*pi*Fp/fs;                 % digital passband freq in rad/sec
    %wp = Fp;
    ws = 2*pi*Fs/fs;                 % digital stopband freq in rad/sec
    %ws = Fs;
    Rp = 0.5;                        % passband ripple in dB
    As = 40;                         % stopband attenuation in dB
    
    Ripple = 10 ^ (-Rp/20)           % passband ripple in absolute
    Attn = 10 ^ (-As/20)             % stopband attenuation in absolute
    
    % Analog prototype specifications: Inverse Mapping for frequencies
    T = 1/fs;                       % set T = 1
    OmegaP = wp/T;               % prototype passband freq
    OmegaS = ws/T;               % prototype stopband freq
    
    % Analog Chebyshev-1 Prototype Filter Calculation:
    [cs, ds] = afd_chb1(OmegaP, OmegaS, Rp, As);
    
    % Calculation of second-order sections:
    fprintf('
    ***** Cascade-form in s-plane: START *****
    ');
    [CS, BS, AS] = sdir2cas(cs, ds)
    fprintf('
    ***** Cascade-form in s-plane: END *****
    ');
    
    % Calculation of Frequency Response:
    [db_s, mag_s, pha_s, ww_s] = freqs_m(cs, ds, 2*pi/T);
    
    % Calculation of Impulse Response:
    [ha, x, t] = impulse(cs, ds);
    
    % Match-z Transformation:
    %[b, a] = imp_invr(cs, ds, T)        % digital Num and Deno coefficients of H(z)
    [b, a] = mzt(cs, ds, T)            % digital Num and Deno coefficients of H(z)
    [C, B, A] = dir2par(b, a)
    
    % Calculation of Frequency Response:
    [db, mag, pha, grd, ww] = freqz_m(b, a);
    
    
    %% -----------------------------------------------------------------
    %%                             Plot
    %% -----------------------------------------------------------------  
    figure('NumberTitle', 'off', 'Name', 'Problem 8.28 Analog Chebyshev-1 lowpass')
    set(gcf,'Color','white'); 
    M = 1.2;                          % Omega max
    
    subplot(2,2,1); plot(ww_s/(pi*1000), mag_s);  grid on; axis([-1.5, 1.5, 0, 1.1]);
    xlabel(' Analog frequency in kpi units'); ylabel('|H|'); title('Magnitude in Absolute');
    set(gca, 'XTickMode', 'manual', 'XTick', [-700, -500, 0, 500, 700, 1000]*0.002);
    set(gca, 'YTickMode', 'manual', 'YTick', [0, 0.01, 0.5, 0.9441, 1]);
    
    subplot(2,2,2); plot(ww_s/(pi*1000), db_s);  grid on; %axis([0, M, -50, 10]);
    xlabel('Analog frequency in kpi units'); ylabel('Decibels'); title('Magnitude in dB ');
    set(gca, 'XTickMode', 'manual', 'XTick', [-700, -500, 0, 500, 700, 1000]*0.002);
    set(gca, 'YTickMode', 'manual', 'YTick', [-70, -40, -1, 0]);
    set(gca,'YTickLabelMode','manual','YTickLabel',['70';'40';' 1';' 0']);
    
    subplot(2,2,3); plot(ww_s/(pi*1000), pha_s/pi);  grid on; axis([-1.5, 1.5, -1.2, 1.2]);
    xlabel('Analog frequency in kpi nuits'); ylabel('radians'); title('Phase Response');
    set(gca, 'XTickMode', 'manual', 'XTick', [-700, -500, 0, 500, 700, 1000]*0.002);
    set(gca, 'YTickMode', 'manual', 'YTick', [-1:0.5:1]);
    
    subplot(2,2,4); plot(t, ha); grid on; %axis([0, 30, -0.05, 0.25]); 
    xlabel('time in seconds'); ylabel('ha(t)'); title('Impulse Response');
    
    
    figure('NumberTitle', 'off', 'Name', 'Problem 8.28 Digital Chebyshev-1 lowpass')
    set(gcf,'Color','white'); 
    M = 2;                          % Omega max
    
    %%  Note  %%
    %%  Magnitude of H(z) * T
    %%  Note  %% 
    subplot(2,2,1); plot(ww/pi, mag/10);  grid on; axis([0, M, 0, 1.1]);
    xlabel(' frequency in pi units'); ylabel('|H|'); title('Magnitude Response');
    set(gca, 'XTickMode', 'manual', 'XTick', [0, 0.5, 0.7, 1.0, M]);
    set(gca, 'YTickMode', 'manual', 'YTick', [0, 0.01, 0.5, 0.9441, 1, 5, 10]);
    
    subplot(2,2,2); plot(ww/pi, pha/pi); axis([0, M, -1.1, 1.1]); grid on;
    xlabel('frequency in pi nuits'); ylabel('radians in pi units'); title('Phase Response');
    set(gca, 'XTickMode', 'manual', 'XTick', [0, 0.5, 0.7, 1.0, M]);
    set(gca, 'YTickMode', 'manual', 'YTick', [-1:1:1]);
    
    subplot(2,2,3); plot(ww/pi, db); axis([0, M, -70, 10]); grid on;
    xlabel('frequency in pi units'); ylabel('Decibels'); title('Magnitude in dB ');
    set(gca, 'XTickMode', 'manual', 'XTick', [0, 0.5, 0.7, 1.0, M]);
    set(gca, 'YTickMode', 'manual', 'YTick', [-50, -40, -1, 0]);
    set(gca,'YTickLabelMode','manual','YTickLabel',['50';'40';' 1';' 0']);
    
    subplot(2,2,4); plot(ww/pi, grd); grid on; %axis([0, M, 0, 35]);
    xlabel('frequency in pi units'); ylabel('Samples'); title('Group Delay');
    set(gca, 'XTickMode', 'manual', 'XTick', [0, 0.5, 0.7, 1.0, M]);
    %set(gca, 'YTickMode', 'manual', 'YTick', [0:5:35]);
    
    figure('NumberTitle', 'off', 'Name', 'Problem 8.28 Pole-Zero Plot')
    set(gcf,'Color','white'); 
    zplane(b,a); 
    title(sprintf('Pole-Zero Plot'));
    %pzplotz(b,a);
    
    
    
    
    % Calculation of Impulse Response:
    %[hs, xs, ts] = impulse(c, d);
    figure('NumberTitle', 'off', 'Name', 'Problem 8.28 Imp & Freq Response')
    set(gcf,'Color','white'); 
    t = [0:0.0005:0.04]; subplot(2,1,1); impulse(cs,ds,t); grid on;   % Impulse response of the analog filter
    axis([0, 0.04, -500, 1000]);hold on
    
    n = [0:1:0.04/T]; hn = filter(b,a,impseq(0,0,0.04/T));             % Impulse response of the digital filter
    stem(n*T,hn); xlabel('time in sec'); title (sprintf('Impulse Responses, T=%.4f',T));
    hold off
    
    
    
    %n = [0:1:29];
    %hz = impz(b, a, n);
    
    % Calculation of Frequency Response:
    [dbs, mags, phas, wws] = freqs_m(cs, ds, 2*pi/T);             % Analog frequency   s-domain  
    
    [dbz, magz, phaz, grdz, wwz] = freqz_m(b, a);                 % Digital  z-domain
     
    
    %% -----------------------------------------------------------------
    %%                             Plot
    %% -----------------------------------------------------------------  
    
    M = 1/T;                          % Omega max
    
    subplot(2,1,2); plot(wws/(2*pi),mags*Fs,'b', wwz/(2*pi)*Fs,magz,'r'); grid on;
    
    xlabel('frequency in Hz'); title('Magnitude Responses'); ylabel('Magnitude'); 
    
    text(1.4,.5,'Analog filter'); text(1.5,1.5,'Digital filter');
    

      运行结果:

            转换成绝对指标

            模拟Chebyshev-1型低通滤波器,系统函数串联形式

            通过match-z方法,模拟低通转换成数字Chebyshev-1型低通滤波器,

            数字Chebyshev-1型低通直接形式的系数

            转换成并联形式,其系数

            模拟低通的幅度谱、相位谱和脉冲响应

            数字低通的幅度谱、相位谱和群延迟

            数字低通的零极点图,可以看出,零极点都位于单位圆内。

            match-z方法,是和脉冲响应不变法不同的,不保留脉冲响应的形式,模拟Chebyshev-1型低通滤波器和对应的数字低通

    滤波器的脉冲响应形式是不同的,见下图。

  • 相关阅读:
    对mysql 数据库操作 使其支持插入中文(针对python)
    网页制作中的超链接怎么做
    python requests的安装与简单运用(转)
    ubuntu 修改权限
    [Linux]常用命令与目录全拼
    Python web 简单服务器的搭建与运行
    ubuntu 下终端关于调试C++的命令
    正则表达式基本语法详解
    Linux下 编译C++/C以及常用的几种命令(ubuntu)
    Visual Studio 2013 中 mysql 使用 EF6
  • 原文地址:https://www.cnblogs.com/ky027wh-sx/p/11385974.html
Copyright © 2011-2022 走看看