zoukankan      html  css  js  c++  java
  • 《DSP using MATLAB》Problem 8.29

            来汉有一月,往日的高温由于最近几个台风沿海登陆影响,今天终于下雨了,凉爽了几个小时。

            接着做题。

    %% ------------------------------------------------------------------------
    %%            Output Info about this m-file
    fprintf('
    ***********************************************************
    ');
    fprintf('        <DSP using MATLAB> Problem 8.29 
    
    ');
    
    banner();
    %% ------------------------------------------------------------------------
    
    Fp = 1500;                    % analog passband freq in Hz
    Fs = 2000;                    % analog stopband freq in Hz
    fs = 8000;                    % sampling rate in Hz
    
    % -------------------------------
    %       ω = ΩT = 2πF/fs
    % Digital Filter Specifications:
    % -------------------------------
    wp = 2*pi*Fp/fs;                 % digital passband freq in rad/sec
    %wp = Fp;
    ws = 2*pi*Fs/fs;                 % digital stopband freq in rad/sec
    %ws = Fs;
    Rp = 0.25;                        % passband ripple in dB
    As = 80;                         % stopband attenuation in dB
    
    Ripple = 10 ^ (-Rp/20)           % passband ripple in absolute
    Attn = 10 ^ (-As/20)             % stopband attenuation in absolute
    
    % Analog prototype specifications: Inverse Mapping for frequencies
    T = 1/fs;                       % set T = 1
    OmegaP = wp/T;               % prototype passband freq
    OmegaS = ws/T;               % prototype stopband freq
    
    % Analog Chebyshev-1 Prototype Filter Calculation:
    [cs, ds] = afd_chb2(OmegaP, OmegaS, Rp, As);
    
    % Calculation of second-order sections:
    fprintf('
    ***** Cascade-form in s-plane: START *****
    ');
    [CS, BS, AS] = sdir2cas(cs, ds)
    fprintf('
    ***** Cascade-form in s-plane: END *****
    ');
    
    % Calculation of Frequency Response:
    [db_s, mag_s, pha_s, ww_s] = freqs_m(cs, ds, 2*pi/T);
    
    % Calculation of Impulse Response:
    [ha, x, t] = impulse(cs, ds);
    
    % Match-z Transformation:
    %[b, a] = imp_invr(cs, ds, T)        % digital Num and Deno coefficients of H(z)
    [b, a] = mzt(cs, ds, T)            % digital Num and Deno coefficients of H(z)
    [C, B, A] = dir2par(b, a)
    
    % Calculation of Frequency Response:
    [db, mag, pha, grd, ww] = freqz_m(b, a);
    
    
    %% -----------------------------------------------------------------
    %%                             Plot
    %% -----------------------------------------------------------------  
    figure('NumberTitle', 'off', 'Name', 'Problem 8.29 Analog Chebyshev-2 lowpass')
    set(gcf,'Color','white'); 
    M = 1.2;                          % Omega max
    
    subplot(2,2,1); plot(ww_s/(pi*1000), mag_s);  grid on; axis([-16, 16, 0, 1.1]);
    xlabel(' Analog frequency in kpi units'); ylabel('|H|'); title('Magnitude in Absolute');
    set(gca, 'XTickMode', 'manual', 'XTick', [-2000, -1500, 0, 1500, 2000, 8000]*0.002);
    set(gca, 'YTickMode', 'manual', 'YTick', [0, 0.0001, 0.5, 0.9716, 1]);
    
    subplot(2,2,2); plot(ww_s/(pi*1000), db_s);  grid on; %axis([0, M, -50, 10]);
    xlabel('Analog frequency in kpi units'); ylabel('Decibels'); title('Magnitude in dB ');
    set(gca, 'XTickMode', 'manual', 'XTick', [-2000, -1500, 0, 1500, 2000, 8000]*0.002);
    set(gca, 'YTickMode', 'manual', 'YTick', [ -80, -1, 0]);
    set(gca,'YTickLabelMode','manual','YTickLabel',['80';' 1';' 0']);
    
    subplot(2,2,3); plot(ww_s/(pi*1000), pha_s/pi);  grid on; axis([-16, 16, -1.2, 1.2]);
    xlabel('Analog frequency in kpi nuits'); ylabel('radians'); title('Phase Response');
    set(gca, 'XTickMode', 'manual', 'XTick', [-2000, -1500, 0, 1500, 2000, 8000]*0.002);
    set(gca, 'YTickMode', 'manual', 'YTick', [-1:0.5:1]);
    
    subplot(2,2,4); plot(t, ha); grid on; %axis([0, 30, -0.05, 0.25]); 
    xlabel('time in seconds'); ylabel('ha(t)'); title('Impulse Response');
    
    
    figure('NumberTitle', 'off', 'Name', 'Problem 8.29 Digital Chebyshev-2 lowpass')
    set(gcf,'Color','white'); 
    M = 2;                          % Omega max
    
    %%  Note  %%
    %%  Magnitude of H(z) * T
    %%  Note  %% 
    subplot(2,2,1); plot(ww/pi, mag/max(mag));  grid on; axis([0, M, 0, 1.1]);
    xlabel(' frequency in pi units'); ylabel('|H|'); title('Magnitude Response');
    set(gca, 'XTickMode', 'manual', 'XTick', [0, 0.375, 0.5, 1.0, M]);
    set(gca, 'YTickMode', 'manual', 'YTick', [0, 0.0001, 0.5, 0.9716, 1, 5, 10, 550]);
    
    subplot(2,2,2); plot(ww/pi, pha/pi); axis([0, M, -1.1, 1.1]); grid on;
    xlabel('frequency in pi nuits'); ylabel('radians in pi units'); title('Phase Response');
    set(gca, 'XTickMode', 'manual', 'XTick', [0, 0.375, 0.5, 1.0, M]);
    set(gca, 'YTickMode', 'manual', 'YTick', [-1:1:1]);
    
    subplot(2,2,3); plot(ww/pi, db); axis([0, M, -120, 10]); grid on;
    xlabel('frequency in pi units'); ylabel('Decibels'); title('Magnitude in dB ');
    set(gca, 'XTickMode', 'manual', 'XTick', [0, 0.375, 0.5, 1.0, M]);
    set(gca, 'YTickMode', 'manual', 'YTick', [-80, -1, 0]);
    set(gca,'YTickLabelMode','manual','YTickLabel',['80';' 1';' 0']);
    
    subplot(2,2,4); plot(ww/pi, grd); grid on; %axis([0, M, 0, 35]);
    xlabel('frequency in pi units'); ylabel('Samples'); title('Group Delay');
    set(gca, 'XTickMode', 'manual', 'XTick', [0, 0.375, 0.5, 1.0, M]);
    %set(gca, 'YTickMode', 'manual', 'YTick', [0:5:35]);
    
    figure('NumberTitle', 'off', 'Name', 'Problem 8.29 Pole-Zero Plot')
    set(gcf,'Color','white'); 
    zplane(b,a); 
    title(sprintf('Pole-Zero Plot'));
    %pzplotz(b,a);
    
    
    
    
    % Calculation of Impulse Response:
    %[hs, xs, ts] = impulse(c, d);
    figure('NumberTitle', 'off', 'Name', 'Problem 8.29 Imp & Freq Response')
    set(gcf,'Color','white'); 
    t = [0 : 0.000125 : 0.01]; subplot(2,1,1); impulse(cs,ds,t); grid on;   % Impulse response of the analog filter
    axis([0, 0.01, -2000, 3000]);hold on
    
    n = [0:1:0.01/T]; hn = filter(b,a,impseq(0,0,0.01/T));             % Impulse response of the digital filter
    stem(n*T,hn); xlabel('time in sec'); title (sprintf('Impulse Responses, T=%f',T));
    hold off
    
    
    
    %n = [0:1:29];
    %hz = impz(b, a, n);
    
    % Calculation of Frequency Response:
    [dbs, mags, phas, wws] = freqs_m(cs, ds, 2*pi/T);             % Analog frequency   s-domain  
    
    [dbz, magz, phaz, grdz, wwz] = freqz_m(b, a);                 % Digital  z-domain
     
    
    %% -----------------------------------------------------------------
    %%                             Plot
    %% -----------------------------------------------------------------  
    
    M = 1/T;                          % Omega max
    
    subplot(2,1,2); plot(wws/(2*pi),mags*Fs,'b', wwz/(2*pi)*Fs,magz,'r'); grid on;
    
    xlabel('frequency in Hz'); title('Magnitude Responses'); ylabel('Magnitude'); 
    
    text(1.4,.5,'Analog filter'); text(1.5,1.5,'Digital filter');
    

      运行结果:

            绝对指标

            Chebyshev-2型模拟低通,系统函数串联形式系数

            用match-z算法转换成数字低通,系统函数直接形式的系数

             直接形式转换成并联形式,系数

            Chebyshev-2型模拟低通,幅度谱、相位谱和脉冲响应

            数字低通幅度谱、相位谱和群延迟响应

            数字低通的零极点图

            给定衰减值对应的精确频率值怎么求,暂时还不会,这里不计算了。

  • 相关阅读:
    【Spring】的【bean】管理(XML配置文件)【Bean实例化的三种方式】
    【Spring】---【IOC入门案例】
    【Spring】---【IOC】
    DOM4J解析文件
    Hibernate API的使用(Query、Criteria、SQLQuery对象)
    Hibernate一级缓冲
    搭建Hibernate环境
    Python之路【第十六篇】:Django【基础篇】
    Python之路【第十五篇】:Web框架
    Python之路【第十四篇】:AngularJS --暂无内容-待更新
  • 原文地址:https://www.cnblogs.com/ky027wh-sx/p/11425321.html
Copyright © 2011-2022 走看看