zoukankan      html  css  js  c++  java
  • 《DSP using MATLAB》Problem 5.21

            证明:

           代码:

    %% ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
    %%            Output Info about this m-file
    fprintf('
    ***********************************************************
    ');
    fprintf('        <DSP using MATLAB> Problem 5.21 
    
    ');
    
    banner();
    %% ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
    
    % ---------------------------------------------------------------------------------
    %               
    %         Parseval relation     
    %           sum[abs(x(n))^2] = sum[abs(X(k))^2]/N 
    %                                 
    % ---------------------------------------------------------------------------------
     n = [0:10]; 
     x = [5, 4, 3, 2, 1, 0, 0, 1, 2, 3, 4];             % N=11 sequence
     N = length(x);
    
    Exn = sum(abs(x).^2)
    
    m1 = -5; N1 = 12;
    n1 = [0:N1-1];
    
    m2 = 8; N2 = 15;
    n2 = [0:N2-1];
    
    % -----------------------------------------------------
    %     1st way to get circular shift---time domain
    % -----------------------------------------------------
    y1_1 = cirshftt(x, m1, N1);
    y2_1 = cirshftt(x, m2, N2);
    
    
    % --------------------------------------------------------
    %     2rd way to get circular shift --- freq domain    
    % --------------------------------------------------------
    y1_2 = cirshftf(x, m1, N1);
    y2_2 = cirshftf(x, m2, N2);
    
    
    figure('NumberTitle', 'off', 'Name', 'P5.21.a x(n) and its cir shift')
    set(gcf,'Color','white'); 
    subplot(3,1,1); stem(n, x); 
    xlabel('n'); ylabel('x(n)');
    title('x(n), N=11');  grid on;
    subplot(3,1,2); stem(n1, y1_1);  
    xlabel('n'); ylabel('y(n)');
    title('TIME domain circular shift x(n), m=-5, N=12');  grid on;
    subplot(3,1,3); stem(n1, y1_2); 
    xlabel('n'); ylabel('y(n)');
    title('FREQ domain circular shift x(n), m=-5, N=12');  grid on;
    axis([0, N1, 0, 6]);
    
    
    figure('NumberTitle', 'off', 'Name', 'P5.21.b x(n) and its cir shift')
    set(gcf,'Color','white'); 
    subplot(3,1,1); stem(n, x); 
    xlabel('n'); ylabel('x(n)');
    title('x(n), N=11');  grid on;
    subplot(3,1,2); stem(n2, y2_1);  
    xlabel('n'); ylabel('y(n)');
    title('TIME domain circular shift x(n), m=8, N=15');  grid on;
    subplot(3,1,3); stem(n2, y2_2); 
    xlabel('n'); ylabel('y(n)');
    title('FREQ domain circular shift x(n), m=8, N=15');  grid on;
    axis([0, N2-1, 0, 6]);
    
    
    % ----------------------------------------------------
    %        DFT of sequence
    % ----------------------------------------------------
    
      Xk_DFT = dft(x, N);
      k = n;
    
        magXk_DFT = abs( [ Xk_DFT ] );                                    % DFT magnitude
        angXk_DFT = angle( [Xk_DFT] )/pi;                                 % DFT angle
       realXk_DFT = real(Xk_DFT); 
       imagXk_DFT = imag(Xk_DFT);
        
       EXk = sum(magXk_DFT .^ 2)/N
    
     Y11k_DFT = dft(y1_1, N1);
     k1 = n1;
    
        magY11k_DFT = abs( [ Y11k_DFT ] );                                    % DFT magnitude
        angY11k_DFT = angle( [Y11k_DFT] )/pi;                                 % DFT angle
       realY11k_DFT = real(Y11k_DFT); 
       imagY11k_DFT = imag(Y11k_DFT);
        
       EY11k = sum(magY11k_DFT.^2)/N1
    
    Y21k_DFT = dft(y2_1, N2);
     k2 = n2;
    
        magY21k_DFT = abs( [ Y21k_DFT ] );                                    % DFT magnitude
        angY21k_DFT = angle( [Y21k_DFT] )/pi;                                 % DFT angle
       realY21k_DFT = real(Y21k_DFT); 
       imagY21k_DFT = imag(Y21k_DFT);
        
       EY21k = sum(magY21k_DFT.^2)/N2
    
    figure('NumberTitle', 'off', 'Name', 'P5.21 X(k), DFT of x(n)')
    set(gcf,'Color','white'); 
    subplot(2,2,1); stem(k, magXk_DFT); 
    xlabel('k'); ylabel('magnitude(k)');
    title('magnitude DFT of x(n), N=11');  grid on;
    subplot(2,2,3); stem(k, angXk_DFT);  
    %axis([-N/2, N/2, -0.5, 50.5]);
    xlabel('k'); ylabel('angle(k)');
    title('angle DFT of x(n), N=11');  grid on;
    subplot(2,2,2); stem(k, realXk_DFT); 
    xlabel('k'); ylabel('real (k)');
    title('real DFT of x(n), N=11');  grid on;
    subplot(2,2,4); stem(k, imagXk_DFT);  
    %axis([-N/2, N/2, -0.5, 50.5]);
    xlabel('k'); ylabel('imag (k)');
    title('imag DFT of x(n), N=11');  grid on;   
    
    figure('NumberTitle', 'off', 'Name', 'P5.21 Y11(k), DFT of x((n+5))12')
    set(gcf,'Color','white'); 
    subplot(2,2,1); stem(k1, magY11k_DFT); 
    xlabel('k'); ylabel('magnitude(k)');
    title('magnitude DFT of y11(n), N=12');  grid on;
    subplot(2,2,3); stem(k1, angY11k_DFT);  
    %axis([-N/2, N/2, -0.5, 50.5]);
    xlabel('k'); ylabel('angle(k)');
    title('angle DFT of y11(n), N=12');  grid on;
    subplot(2,2,2); stem(k1, realY11k_DFT); 
    xlabel('k'); ylabel('real (k)');
    title('real DFT of y11(n), N=12');  grid on;
    subplot(2,2,4); stem(k1, imagY11k_DFT);  
    %axis([-N/2, N/2, -0.5, 50.5]);
    xlabel('k'); ylabel('imag (k)');
    title('imag DFT of y11(n), N=12');  grid on;   
    
    figure('NumberTitle', 'off', 'Name', 'P5.21 Y21(k), DFT of x((n-8))15')
    set(gcf,'Color','white'); 
    subplot(2,2,1); stem(k2, magY21k_DFT); 
    xlabel('k'); ylabel('magnitude(k)');
    title('magnitude DFT of y21(n), N=15');  grid on;
    subplot(2,2,3); stem(k2, angY21k_DFT);  
    %axis([-N/2, N/2, -0.5, 50.5]);
    xlabel('k'); ylabel('angle(k)');
    title('angle DFT of y21(n), N=15');  grid on;
    subplot(2,2,2); stem(k2, realY21k_DFT); 
    xlabel('k'); ylabel('real (k)');
    title('real DFT of y21(n), N=15');  grid on;
    subplot(2,2,4); stem(k2, imagY21k_DFT);  
    %axis([-N/2, N/2, -0.5, 50.5]);
    xlabel('k'); ylabel('imag (k)');
    title('imag DFT of y21(n), N=15');  grid on;   
    

      运行结果:

            序列的圆周移位

            原始序列x(n)的DFT

            圆周移位序列1的DFT

            圆周移位序列2的DFT

            上图可知,时域的能量和频域的能量相等。

    牢记: 1、如果你决定做某事,那就动手去做;不要受任何人、任何事的干扰。2、这个世界并不完美,但依然值得我们去为之奋斗。
  • 相关阅读:
    win10 uwp 异步进度条
    win10 uwp 异步进度条
    win10 uwp 简单MasterDetail
    win10 uwp 简单MasterDetail
    如何使用PHP验证客户端提交的表单数据
    PHP 表单和用户输入讲解
    什么是PHP 面向对象
    PHP 命名空间(namespace)定义
    PHP 魔术常量介绍
    archer 安装
  • 原文地址:https://www.cnblogs.com/ky027wh-sx/p/9429760.html
Copyright © 2011-2022 走看看