zoukankan      html  css  js  c++  java
  • 《DSP using MATLAB》Problem 5.37

            证明过程:

            代码:

    %% ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
    %%            Output Info about this m-file
    fprintf('
    ***********************************************************
    ');
    fprintf('        <DSP using MATLAB> Problem 5.37 
    
    ');
    
    banner();
    %% ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
    
    % -------------------------------------------------------------------------------------
    %          X(k) is DFTs of real-valued sequence x(n)             
    %           x(n)=A*cos(wn)R(n)   n=[0:N-1]
    %             
    %             x(n) = sin(5*pi*n/99)    n=[0:100-1]                                     
    % -------------------------------------------------------------------------------------
    N = 100; A = 1;
    n1 = [0:N-1];
    x1 = A*sin(5*pi*n1/99);
    
    figure('NumberTitle', 'off', 'Name', 'P5.37 x(n), N=100')
    set(gcf,'Color','white'); 
    stem(n1, x1); 
    xlabel('n'); ylabel('x(n)');
    title('x(n)=sin(5pin/99)');  grid on;
    
        k1 = [0:N-1];
    Xk_DFT = fft(x1, N);
        N1 = length(Xk_DFT);                                              % length 
    
        magXk_DFT = abs( [ Xk_DFT ] );                                    % DFT magnitude
        angXk_DFT = angle( [Xk_DFT] )/pi;                                 % DFT angle
       realXk_DFT = real(Xk_DFT); imagXk_DFT = imag(Xk_DFT);
    
    figure('NumberTitle', 'off', 'Name', 'P5.37 X(k), DFT of x(n) N=100')
    set(gcf,'Color','white'); 
    subplot(2,1,1); stem(k1, magXk_DFT); 
    xlabel('k'); ylabel('magnitude(k)');
    title('magnitude DFT of x(n)');  grid on;
    subplot(2,1,2); stem(k1, angXk_DFT);  
    %axis([-N/2, N/2, -0.5, 50.5]);
    xlabel('k'); ylabel('angle(k)');
    title('angle DFT of x(n)');  grid on;
    
    figure('NumberTitle', 'off', 'Name', 'P5.37 X(k), N=100')
    set(gcf,'Color','white'); 
    subplot(2,1,1); stem(k1, realXk_DFT); 
    xlabel('k'); ylabel('real (k)');
    title('real DFT of x(n)');  grid on;
    subplot(2,1,2); stem(k1, imagXk_DFT);  
    %axis([-N/2, N/2, -0.5, 50.5]);
    xlabel('k'); ylabel('imag (k)');
    title('imag DFT of x(n)');  grid on;
    

      运行结果:

            原始序列

            不同范围的DFT

    牢记: 1、如果你决定做某事,那就动手去做;不要受任何人、任何事的干扰。2、这个世界并不完美,但依然值得我们去为之奋斗。
  • 相关阅读:
    不使用BeanUtils,利用Java反射机制:表单数据自动封装到JavaBean
    VS2010水晶报表的添加与使用
    使用SelectClipRgn注意事项
    使用SelectClipRgn注意事项
    使用事件CreateEvent注意事项
    【转】Delphi内嵌ASM简易教程
    栈顶和栈底示意图
    【转】对ARM堆栈的理解
    UISegmentedControl的基本使用
    C语言小知识总结
  • 原文地址:https://www.cnblogs.com/ky027wh-sx/p/9532401.html
Copyright © 2011-2022 走看看