zoukankan      html  css  js  c++  java
  • 机器学习模型为什么要将特征离散化

    我在刷Kaggle时发现一个问题。很多人在处理数据的时候,经常把连续性特征离散化。对此我感到很好奇,所以上网搜了一些总结,主要内容来自知乎连续特征的离散化:在什么情况下将连续的特征离散化之后可以获得更好的效果?

    这个是严林的回答
    在工业界,很少直接将连续值作为逻辑回归模型的特征输入,而是将连续特征离散化为一系列0、1特征交给逻辑回归模型,这样做的优势有以下几点:

    1. 离散特征的增加和减少都很容易,易于模型的快速迭代;
    2. 稀疏向量内积乘法运算速度快,计算结果方便存储,容易扩展;
    3. 离散化后的特征对异常数据有很强的鲁棒性:比如一个特征是年龄>30是1,否则0。如果特征没有离散化,一个异常数据“年龄300岁”会给模型造成很大的干扰;
    4. 逻辑回归属于广义线性模型,表达能力受限;单变量离散化为N个后,每个变量有单独的权重,相当于为模型引入了非线性,能够提升模型表达能力,加大拟合;
    5. 离散化后可以进行特征交叉,由M+N个变量变为M*N个变量,进一步引入非线性,提升表达能力;
    6. 特征离散化后,模型会更稳定,比如如果对用户年龄离散化,20-30作为一个区间,不会因为一个用户年龄长了一岁就变成一个完全不同的人。当然处于区间相邻处的样本会刚好相反,所以怎么划分区间是门学问;
    7. 特征离散化以后,起到了简化了逻辑回归模型的作用,降低了模型过拟合的风险。

    李沐曾经说过:模型是使用离散特征还是连续特征,其实是一个“海量离散特征+简单模型” 同 “少量连续特征+复杂模型”的权衡。既可以离散化用线性模型,也可以用连续特征加深度学习。就看是喜欢折腾特征还是折腾模型了。通常来说,前者容易,而且可以n个人一起并行做,有成功经验;后者目前看很赞,能走多远还须拭目以待。

  • 相关阅读:
    css设置兼容的透明样式
    mybatis 使用oracle merge into 语句踩坑实录
    eclipse导入SVN上的Maven多模块项目
    jquery.form插件中动态修改表单数据
    java的几种对象(po,dto,dao等)
    redis面试总结
    前段面试准备
    查询各科成绩最好的学生
    Github访问慢解决办法
    该文件有程序在使用
  • 原文地址:https://www.cnblogs.com/kylinsblog/p/7921689.html
Copyright © 2011-2022 走看看