zoukankan      html  css  js  c++  java
  • 学习论文:Eyeriss v1

    Eyeriss: An Energy-Efficient Reconfigurable Accelerator for Deep Convolutional Neural Networks

    Eyeriss:适用于深度卷积神经网络的节能型可重构加速器

    论文地址:https://people.csail.mit.edu/emer/papers/2017.01.jssc.eyeriss_design.pdf

    参考

    https://blog.csdn.net/sinat_33705291/article/details/106489155?ops_request_misc=%25257B%252522request%25255Fid%252522%25253A%252522160854486416780299057353%252522%25252C%252522scm%252522%25253A%25252220140713.130102334..%252522%25257D&request_id=160854486416780299057353&biz_id=0&utm_medium=distribute.pc_search_result.none-task-blog-2~all~top_click~default-1-106489155.nonecase&utm_term=eyeriss

    https://blog.csdn.net/sinat_33705291/article/details/106489155?ops_request_misc=%25257B%252522request%25255Fid%252522%25253A%252522160854486416780299057353%252522%25252C%252522scm%252522%25253A%25252220140713.130102334..%252522%25257D&request_id=160854486416780299057353&biz_id=0&utm_medium=distribute.pc_search_result.none-task-blog-2~all~top_click~default-1-106489155.nonecase&utm_term=eyeriss

    CNN计算需要大量数据,这会导致从芯片上和芯片外转移大量数据,这比计算耗能更多。

    因此,将任何CNN形状的数据移动能源成本降至最低是高吞吐量和能源效率的关键。

    Eyeriss通过在具有168个处理元素的空间架构上使用建议的处理数据流(称为行固定(RS))来实现这些目标。

    Eyeriss的主要特点如下。

    1) 一种空间体系结构,使用168个处理元素(PE)的数组来创建一个四级内存层次结构。数据移动可以利用低成本级别,

    如PE暂存板(spad)和PE间通信,以最小化对高成本级别的数据访问,包括大的片上全局缓冲区(GLB)和片外DRAM。

    主要包括4级存储:DRAM;global buffer;PE间通信用的缓存fifo;PE内部的寄存器堆。

    2) 一种CNN数据流,称为Row stational(RS),它重新配置空间结构以映射给定CNN形状的计算并优化以获得最佳能效。

    3) 一种片上网络(NoC)体系结构,使用多播和点对点单周期数据传输来支持RS数据流。

    4) 行程压缩(RLC)和PE数据选通,利用CNN中零数据的统计信息进一步提高能源效率。

     

    Eyeriss芯片主要集中在两个方面来提高能源效率:

    1)减少数据移动  2) 利用数据统计。

     

    节能数据流:行固定

  • 相关阅读:
    oracle-Oracle试题
    webservice-WebService试题
    php-PHP试题
    xml-xml试题
    ajax-Ajax试题
    用java在客户端读取mongodb中的数据并发送至服务器
    表格标记
    HTML常用标记
    Java操作Mongodb 保存/读取java对象到/从mongodb
    Spark Streaming的编程模型
  • 原文地址:https://www.cnblogs.com/kyshan/p/14091467.html
Copyright © 2011-2022 走看看