zoukankan      html  css  js  c++  java
  • 51nod 1072【威佐夫游戏】

    有2堆石子。A B两个人轮流拿,A先拿。每次可以从一堆中取任意个或从2堆中取相同数量的石子,但不可不取。拿到最后1颗石子的人获胜。假设A B都非常聪明,拿石子的过程中不会出现失误。给出2堆石子的数量,问最后谁能赢得比赛。
    例如:2堆石子分别为3颗和5颗。那么不论A怎样拿,B都有对应的方法拿到最后1颗。
    Input
    第1行:一个数T,表示后面用作输入测试的数的数量。(1 <= T <= 10000)
    第2 - T + 1行:每行2个数分别是2堆石子的数量,中间用空格分隔。(1 <= N <= 2000000)
    Output
    共T行,如果A获胜输出A,如果B获胜输出B。
    Input示例
    3
    3 5
    3 4
    1 9
    Output示例
    B
    A
    A


    威佐夫博奕(Wythoff Game):有两堆各若干个物品,两个人轮流从某一堆或同
    时从两堆中取同样多的物品,规定每次至少取一个,多者不限,最后取光者得胜。

        这种情况下是颇为复杂的。我们用(ak,bk)(ak ≤ bk ,k=0,1,2,…,n)表示
    两堆物品的数量并称其为局势,如果甲面对(0,0),那么甲已经输了,这种局势我们
    称为奇异局势。前几个奇异局势是:(0,0)、(1,2)、(3,5)、(4,7)、(6,
    10)、(8,13)、(9,15)、(11,18)、(12,20)。

        可以看出,a0=b0=0,ak是未在前面出现过的最小自然数,而 bk= ak + k,奇异局势有
    如下三条性质:

     1、任何自然数都包含在一个且仅有一个奇异局势中。

     2、任意操作都可将奇异局势变为非奇异局势。

     3。采用适当的方法,可以将非奇异局势变为奇异局势。

      从如上性质可知,两个人如果都采用正确操作,那么面对非奇异局势,先拿者必胜
    ;反之,则后拿者取胜。

        那么任给一个局势(a,b),怎样判断它是不是奇异局势呢?我们有如下公式:

        ak =[k(1+√5)/2],bk= ak + k  (k=0,1,2,…,n 方括号表示取整函数)

    奇妙的是其中出现了黄金分割数(1+√5)/2 = 1。618…,因此,由ak,bk组成的矩形近
    似为黄金矩形,由于2/(1+√5)=(√5-1)/2,可以先求出j=[a(√5-1)/2],若a=[
    j(1+√5)/2],那么a = aj,bj = aj + j,若不等于,那么a = aj+1,bj+1 = aj+1
    + j + 1,若都不是,那么就不是奇异局势。然后再按照上述法则进行,一定会遇到奇异
    局势。


    题解:

    #include<cstdio>
    #include<cmath>
    #include<iostream>
    using namespace std;
    int main(){
        int t,a,b;
        cin>>t;
        while(t--){
            cin>>a>>b;
            if(a>b) swap(a,b);
            int c=b-a;
            double temp=c*1.0*(sqrt(5)+1)/2.0;
            if(a==int(temp)) printf("B
    ");
            else printf("A
    ");
        }
        return 0;
    }
    

  • 相关阅读:
    uniapp开发微信小程序
    requests自动登录禅道并提交bug 测试
    [转载]使用CPU时间戳进行高精度计时
    lu面
    音量控制面板项目说明
    【转载】粤语翻译工具
    专业操盘手的买卖法则
    自动刷新查询火车票脚本
    股东权益和权益比
    异形魔方SQ1的暴力解法
  • 原文地址:https://www.cnblogs.com/kzbin/p/9205198.html
Copyright © 2011-2022 走看看