Description
Now we have a number, you can swap any two adjacent digits of it, but you can not swap more than K times. Then, what is the largest probable number that we can get after your swapping?
Input
There is an integer T (1 <= T <= 200) in the first line, means there are T test cases in total.
For each test case, there is an integer K (0 <= K < 106) in the first line, which has the same meaning as above. And the number is in the next line. It has at most 1000 digits, and will not start with 0.
There are at most 10 test cases that satisfy the number of digits is larger than 100.
Output
For each test case, you should print the largest probable number that we can get after your swapping.
Sample Input
3 2 1234 4 1234 1 4321
Sample Output
3124 4213 4321
- 分析:每次从能够最多移动的位数里面找到最大值,判断是否能够当前元素交换。数组循环右移index-i位,index位最大值所在下标,i为当前元素。
- 代码:
#include <iostream> #include <cstdio> #include <cstring> #include <cmath> #include <algorithm> #include <vector> #include <set> #include <map> using namespace std; int main() { int T,k,t; char s[1005]; cin>>T; while(T--){ int index=-1,maxx='0'; cin>>k>>s; int len=strlen(s); for(int i=0;i<len;i++){ maxx='0'; index=-1; for(int j=i+1;j<len&&j<=i+k;j++){ if(s[j]>maxx){ maxx=s[j]; index=j; } } if(maxx>s[i]){ for(int j=index;j>=i;j--){ s[j]=s[j-1]; } s[i]=maxx; k-=(index-i); } } puts(s); } return 0; }