zoukankan      html  css  js  c++  java
  • POJ 3268 Silver Cow Party 单向最短路

    Silver Cow Party
    Time Limit: 2000MS   Memory Limit: 65536K
    Total Submissions: 22864   Accepted: 10449

    Description

    One cow from each of N farms (1 ≤ N ≤ 1000) conveniently numbered 1..N is going to attend the big cow party to be held at farm #X (1 ≤ X ≤ N). A total of M (1 ≤ M ≤ 100,000) unidirectional (one-way roads connects pairs of farms; road i requires Ti (1 ≤ Ti ≤ 100) units of time to traverse.

    Each cow must walk to the party and, when the party is over, return to her farm. Each cow is lazy and thus picks an optimal route with the shortest time. A cow's return route might be different from her original route to the party since roads are one-way.

    Of all the cows, what is the longest amount of time a cow must spend walking to the party and back?

    Input

    Line 1: Three space-separated integers, respectively: NM, and X 
    Lines 2..M+1: Line i+1 describes road i with three space-separated integers: AiBi, and Ti. The described road runs from farm Ai to farm Bi, requiring Ti time units to traverse.

    Output

    Line 1: One integer: the maximum of time any one cow must walk.

    Sample Input

    4 8 2
    1 2 4
    1 3 2
    1 4 7
    2 1 1
    2 3 5
    3 1 2
    3 4 4
    4 2 3

    Sample Output

    10

    Hint

    Cow 4 proceeds directly to the party (3 units) and returns via farms 1 and 3 (7 units), for a total of 10 time units.

    Source

    求两次最短路,第一次求t到其余各点的最短路,第二次求各点到t的最短路。
    最后求的是所有点到t的距离的最大值
    #include <iostream>
    #include <deque>
    #include <cstdio>
    #include <cstring>
    #include <vector>
    #include <queue> 
    #include <algorithm>
    #define maxn 100010
    using namespace std;
    vector<pair<int,int> > E[maxn];
    int d1[maxn],d2[maxn];
    int n,m,t,x[maxn],y[maxn],z[maxn];
    int max(int a,int b){
        if(a>=b){
            return a;
        }
        return b;
    }
    void init1(){
        for(int i=0;i<maxn;i++){
            E[i].clear();
            d1[i] = 1e9;
        }
    }
    void init2(){
        for(int i=0;i<maxn;i++){
            E[i].clear();
            d2[i] = 1e9;
        }
    }
    void dijkstra(int t,int d[]){
        d[t] = 0;
        priority_queue<pair<int,int> > q;
        q.push(make_pair(-d[t],t));
        while(!q.empty()){
            int now = q.top().second;
            q.pop();
            for(int i=0;i<E[now].size();i++){
                int v = E[now][i].first;
                if(d[v] > d[now] + E[now][i].second){
                    d[v] = d[now] + E[now][i].second;
                    q.push(make_pair(-d[v],v));
                }
            }
        }
    }
    int main()
    {
        while(cin >> n >> m >> t){
            init1();
            for(int i=0;i<m;i++){
                cin >> x[i] >> y[i] >> z[i];
                E[x[i]].push_back(make_pair(y[i],z[i]));
            }
            dijkstra(t,d1);//正求一次    
            init2();
            for(int i=0;i<m;i++){
                E[y[i]].push_back(make_pair(x[i],z[i]));
            }    //记得在这里要把所有的路反过来
            dijkstra(t,d2);//反求一次    
            int num = -1;
            for(int i=1;i<=n;i++){
                num = max(num,d1[i]+d2[i]);
            }
            cout << num << endl;
        }
        return 0;
    }
    彼时当年少,莫负好时光。
  • 相关阅读:
    SQL Server 2005 中的分区表和索引 [轉]
    [导入]使用RDLC报表(一)
    正则表达式30分钟入门教程[轉]
    C#的TextBox控件输入测试只允许输入数字的测试:
    c#创建access数据库和数据表[转]
    [导入]使用RDLC报表(二)使用自定义数据集
    ASP.net 文件下載
    [导入]使用RDLC报表(四)钻取式报表
    [导入]使用RDLC报表(三)向RDLC报表传入参数
    C# SQL server2000中保存的图像
  • 原文地址:https://www.cnblogs.com/l609929321/p/7240806.html
Copyright © 2011-2022 走看看