A Cubic number and A Cubic Number
Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 65535/32768 K (Java/Others)
Total Submission(s): 0 Accepted Submission(s): 0
Problem Description
A cubic number is the result of using a whole number in a multiplication three times. For example, 3×3×3=27 so 27 is a cubic number. The first few cubic numbers are 1,8,27,64 and 125. Given an prime number p. Check that if p is a difference of two cubic numbers.
Input
The first of input contains an integer T (1≤T≤100) which is the total number of test cases.
For each test case, a line contains a prime number p (2≤p≤1012).
For each test case, a line contains a prime number p (2≤p≤1012).
Output
For each test case, output 'YES' if given p is a difference of two cubic numbers, or 'NO' if not.
Sample Input
10
2
3
5
7
11
13
17
19
23
29
Sample Output
NO
NO
NO
YES
NO
NO
NO
YES
NO
NO
Source
输入输出测试
水题呀 考试的时候想那么久,其实就是一个公式,却没有看到给出的数是一个素数,否则就直接解方程达到一个公式求出来,考试的时候错了十几遍(哪来的勇气。。最好让队友暴力过了。。)
以后看题目一定要看清楚呀!!!
给出一个p,p是素数(2 <= p <=1e12),判断是否存在正整数a,b使得
a*a*a - b*b*b = p
如果存在输出YES,否则输出NO。
我们知道立方差公式:
a*a*a - b*b*b = (a-b)(a*a+a*b+b*b)
我们知道a*a*a - b*b*b = prime(素数)
所以(a-b)(a*a+a*b+b*b) = prime;
由因为prime 只能由1*prime得来。
所以prime = 1*prime
所以(a-b) = 1, (a*a+a*b+b*b) = prime , a,b必是两个相邻的整数。
设b = x,a = x+1
则 (x+1)^3-x^3 = 3*x*x + 3*x + 1 = prime
3*x*x + 3*x = prime-1
x*x + x = (prime-1)/3
x(x+1) = (prime-1)/3
令:(prime-1)/3 = T;
x = int(sqrt(T)) //解出一个x
若x*(x+1) == T
则说明存在一个整数a,是的a^3 - (a-1)^3 等于当前所输入的素数。
这个a就是我们解出的x再加1.
#include <iostream> #include <stdio.h> #include <math.h> using namespace std; int main() { int T; scanf("%d",&T); while(T--) { double n,prime; scanf("%lf",&prime); prime = prime - 1; n = prime/3; int a=(int)(sqrt(n)); int b=a+1; if((double)a*b==n) printf("YES "); else printf("NO "); } return 0; }