zoukankan      html  css  js  c++  java
  • HDU 5793 A Boring Question 多校训练

    There are an equation. 
    0k1,k2,kmn1j<m(kj+1kj)%1000000007=?∑0≤k1,k2,⋯km≤n∏1⩽j<m(kj+1kj)%1000000007=? 
    We define that (kj+1kj)=kj+1!kj!(kj+1kj)!(kj+1kj)=kj+1!kj!(kj+1−kj)! . And (kj+1kj)=0(kj+1kj)=0 while kj+1<kjkj+1<kj. 
    You have to get the answer for each nn and mm that given to you. 
    For example,if n=1n=1,m=3m=3, 
    When k1=0,k2=0,k3=0,(k2k1)(k3k2)=1k1=0,k2=0,k3=0,(k2k1)(k3k2)=1; 
    Whenk1=0,k2=1,k3=0,(k2k1)(k3k2)=0k1=0,k2=1,k3=0,(k2k1)(k3k2)=0; 
    Whenk1=1,k2=0,k3=0,(k2k1)(k3k2)=0k1=1,k2=0,k3=0,(k2k1)(k3k2)=0; 
    Whenk1=1,k2=1,k3=0,(k2k1)(k3k2)=0k1=1,k2=1,k3=0,(k2k1)(k3k2)=0; 
    Whenk1=0,k2=0,k3=1,(k2k1)(k3k2)=1k1=0,k2=0,k3=1,(k2k1)(k3k2)=1; 
    Whenk1=0,k2=1,k3=1,(k2k1)(k3k2)=1k1=0,k2=1,k3=1,(k2k1)(k3k2)=1; 
    Whenk1=1,k2=0,k3=1,(k2k1)(k3k2)=0k1=1,k2=0,k3=1,(k2k1)(k3k2)=0; 
    Whenk1=1,k2=1,k3=1,(k2k1)(k3k2)=1k1=1,k2=1,k3=1,(k2k1)(k3k2)=1. 
    So the answer is 4.

    InputThe first line of the input contains the only integer TT,(1T10000)(1≤T≤10000) 
    Then TT lines follow,the i-th line contains two integers nn,mm,(0n109,2m109)(0≤n≤109,2≤m≤109) 
    OutputFor each nn and mm,output the answer in a single line.Sample Input

    2
    1 2
    2 3

    Sample Output

    3
    13

    根据题意可以推出公式
    0k1,k2,kmn1j<m(kj+1kj)%1000000007= m^0 + m^1 + m^2 + ... + m^n = ( pow(m,n+1) - 1 / m - 1 ) % mod;
    注意这个题目中是除法后取余,所以取余要用逆元取余
    下面贴出两种可以用逆元取余的方法

    #include<stdio.h>
    #include<string.h>
    #include<algorithm>
    #include<iostream>
    #include<cmath>
    #include<stack>
    #define mod 1000000007
    using namespace std;
    typedef long long ll;
    ll qow(ll a,ll b) {
        ll ans = 1;
        while( b ) {
            if( b&1 ) {
                ans = ans*a%mod;
            }
            a = a*a%mod;
            b /= 2;
        }
        return ans;
    }
    int main() {
        ll T;
        cin >> T;
        while( T -- ) {
            ll n,m;
            cin >> n >> m;
            ll sum = 1,num=1;
            if( n == 0 ) {
                cout << sum << endl;
                continue;
            }
            num = (qow(m,n+1)-1)*qow(m-1,mod-2)%mod; //费马小定理的求法
            /*用qow(m-1,mod-2)对m-1进行逆元取余*/
            cout << num << endl;
        }
        return 0;
    }
    #include <cstdio>
    #include <cmath>
    #define MAX 100005
    #define mod 1000000007
    
    using namespace std;
    
    long long multi(long long a, long long b)//快速幂
    {
        long long ret = 1;
        while(b > 0)
        {
            if(b & 1)
                ret = (ret * a) % mod;
            a = (a * a) % mod;
            b >>= 1;
        }
        return ret;
    }
    
    long long exgcd(long long a, long long b, long long &x, long long &y)//扩展欧几里得
    {
        if(!b)
        {
            x = 1;
            y = 0;
            return a;
        }
        long long d = exgcd(b, a % b, x, y);
    
        long long tmp = x;
        x = y;
        y = tmp - a / b * y;
    
        return d;
    }
    
    int main()
    {
        int T;
        scanf("%d", &T);
        while(T--)
        {
            long long n, m, x, y;
            scanf("%lld %lld", &n, &m);
            long long mul = (multi(m, n + 1) - 1) % mod;
            long long d = exgcd(m - 1, mod, x, y);//若这里mod的位置填写mod * (m - 1),最终计算时需要让x和mod都除以d
            x *= mul;
            x /= d;//因为m - 1和mod是互质的,这句可以去掉。
            x = (x % mod + mod) % mod;//防止最终结果为负数
            printf("%lld
    ", x);
        }
        return 0;
    }
     
    彼时当年少,莫负好时光。
  • 相关阅读:
    有线电视网络(最小割)
    太空飞行计划问题(最小割,最大权闭合图,网络流24题)
    攻击装置(最小割,最大权独立集)
    王者之剑(最小割,最大独立集)
    善意的投票(最小割)
    有向图破坏(最小割,最小点权覆盖)
    线性代数(最小割,最大密度子图,TJOI2015)
    codewars--js--counting duplicates
    codewars--js--the highest and lowest number + JS 字符串和数组相关知识
    work
  • 原文地址:https://www.cnblogs.com/l609929321/p/8325793.html
Copyright © 2011-2022 走看看